Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):273–284. doi: 10.1093/genetics/154.1.273

Quantitative analysis of gene function in the Drosophila embryo.

W D Tracey Jr 1, X Ning 1, M Klingler 1, S G Kramer 1, J P Gergen 1
PMCID: PMC1460918  PMID: 10628987

Abstract

The specific functions of gene products frequently depend on the developmental context in which they are expressed. Thus, studies on gene function will benefit from systems that allow for manipulation of gene expression within model systems where the developmental context is well defined. Here we describe a system that allows for genetically controlled overexpression of any gene of interest under normal physiological conditions in the early Drosophila embryo. This regulated expression is achieved through the use of Drosophila lines that express a maternal mRNA for the yeast transcription factor GAL4. Embryos derived from females that express GAL4 maternally activate GAL4-dependent UAS transgenes at uniform levels throughout the embryo during the blastoderm stage of embryogenesis. The expression levels can be quantitatively manipulated through the use of lines that have different levels of maternal GAL4 activity. Specific phenotypes are produced by expression of a number of different developmental regulators with this system, including genes that normally do not function during Drosophila embryogenesis. Analysis of the response to overexpression of runt provides evidence that this pair-rule segmentation gene has a direct role in repressing transcription of the segment-polarity gene engrailed. The maternal GAL4 system will have applications both for the measurement of gene activity in reverse genetic experiments as well as for the identification of genetic factors that have quantitative effects on gene function in vivo.

Full Text

The Full Text of this article is available as a PDF (230.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Atia G. R., Fruscoloni P., Jacobs-Lorena M. Translational regulation of mRNAs for ribosomal proteins during early Drosophila development. Biochemistry. 1985 Oct 8;24(21):5798–5803. doi: 10.1021/bi00342a017. [DOI] [PubMed] [Google Scholar]
  2. Arnosti D. N., Barolo S., Levine M., Small S. The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. Development. 1996 Jan;122(1):205–214. doi: 10.1242/dev.122.1.205. [DOI] [PubMed] [Google Scholar]
  3. Aronson B. D., Fisher A. L., Blechman K., Caudy M., Gergen J. P. Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol. 1997 Sep;17(9):5581–5587. doi: 10.1128/mcb.17.9.5581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bashaw G. J., Baker B. S. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell. 1997 May 30;89(5):789–798. doi: 10.1016/s0092-8674(00)80262-7. [DOI] [PubMed] [Google Scholar]
  5. Baumgartner S., Noll M. Network of interactions among pair-rule genes regulating paired expression during primordial segmentation of Drosophila. Mech Dev. 1990 Dec;33(1):1–18. doi: 10.1016/0925-4773(90)90130-e. [DOI] [PubMed] [Google Scholar]
  6. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  7. Brunner D., Dücker K., Oellers N., Hafen E., Scholz H., Klämbt C. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature. 1994 Aug 4;370(6488):386–389. doi: 10.1038/370386a0. [DOI] [PubMed] [Google Scholar]
  8. Carroll S. B., Scott M. P. Zygotically active genes that affect the spatial expression of the fushi tarazu segmentation gene during early Drosophila embryogenesis. Cell. 1986 Apr 11;45(1):113–126. doi: 10.1016/0092-8674(86)90543-x. [DOI] [PubMed] [Google Scholar]
  9. Daga A., Karlovich C. A., Dumstrei K., Banerjee U. Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes Dev. 1996 May 15;10(10):1194–1205. doi: 10.1101/gad.10.10.1194. [DOI] [PubMed] [Google Scholar]
  10. DiNardo S., O'Farrell P. H. Establishment and refinement of segmental pattern in the Drosophila embryo: spatial control of engrailed expression by pair-rule genes. Genes Dev. 1987 Dec;1(10):1212–1225. doi: 10.1101/gad.1.10.1212. [DOI] [PubMed] [Google Scholar]
  11. DiNardo S., Sher E., Heemskerk-Jongens J., Kassis J. A., O'Farrell P. H. Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature. 1988 Apr 14;332(6165):604–609. doi: 10.1038/332604a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dong J., Hung L. H., Strome R., Krause H. M. A phosphorylation site in the ftz homeodomain is required for activity. EMBO J. 1998 Apr 15;17(8):2308–2318. doi: 10.1093/emboj/17.8.2308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dormand E. L., Brand A. H. Runt determines cell fates in the Drosophila embryonic CNS. Development. 1998 May;125(9):1659–1667. doi: 10.1242/dev.125.9.1659. [DOI] [PubMed] [Google Scholar]
  14. Ducy P., Zhang R., Geoffroy V., Ridall A. L., Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997 May 30;89(5):747–754. doi: 10.1016/s0092-8674(00)80257-3. [DOI] [PubMed] [Google Scholar]
  15. Duffy J. B., Gergen J. P. The Drosophila segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Genes Dev. 1991 Dec;5(12A):2176–2187. doi: 10.1101/gad.5.12a.2176. [DOI] [PubMed] [Google Scholar]
  16. Duffy J. B., Kania M. A., Gergen J. P. Expression and function of the Drosophila gene runt in early stages of neural development. Development. 1991 Dec;113(4):1223–1230. doi: 10.1242/dev.113.4.1223. [DOI] [PubMed] [Google Scholar]
  17. Ephrussi A., Lehmann R. Induction of germ cell formation by oskar. Nature. 1992 Jul 30;358(6385):387–392. doi: 10.1038/358387a0. [DOI] [PubMed] [Google Scholar]
  18. Ferguson E. L., Anderson K. V. Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell. 1992 Oct 30;71(3):451–461. doi: 10.1016/0092-8674(92)90514-d. [DOI] [PubMed] [Google Scholar]
  19. Fischer J. A., Giniger E., Maniatis T., Ptashne M. GAL4 activates transcription in Drosophila. Nature. 1988 Apr 28;332(6167):853–856. doi: 10.1038/332853a0. [DOI] [PubMed] [Google Scholar]
  20. Flores G. V., Daga A., Kalhor H. R., Banerjee U. Lozenge is expressed in pluripotent precursor cells and patterns multiple cell types in the Drosophila eye through the control of cell-specific transcription factors. Development. 1998 Sep;125(18):3681–3687. doi: 10.1242/dev.125.18.3681. [DOI] [PubMed] [Google Scholar]
  21. Forbes A., Lehmann R. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development. 1998 Feb;125(4):679–690. doi: 10.1242/dev.125.4.679. [DOI] [PubMed] [Google Scholar]
  22. Frank L. H., Rushlow C. A group of genes required for maintenance of the amnioserosa tissue in Drosophila. Development. 1996 May;122(5):1343–1352. doi: 10.1242/dev.122.5.1343. [DOI] [PubMed] [Google Scholar]
  23. Gavis E. R., Lehmann R. Translational regulation of nanos by RNA localization. Nature. 1994 May 26;369(6478):315–318. doi: 10.1038/369315a0. [DOI] [PubMed] [Google Scholar]
  24. Gebauer F., Merendino L., Hentze M. W., Valcárcel J. The Drosophila splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. RNA. 1998 Feb;4(2):142–150. [PMC free article] [PubMed] [Google Scholar]
  25. Gergen J. P., Wieschaus E. Dosage requirements for runt in the segmentation of Drosophila embryos. Cell. 1986 Apr 25;45(2):289–299. doi: 10.1016/0092-8674(86)90393-4. [DOI] [PubMed] [Google Scholar]
  26. Gupta B. P., Flores G. V., Banerjee U., Rodrigues V. Patterning an epidermal field: Drosophila lozenge, a member of the AML-1/Runt family of transcription factors, specifies olfactory sense organ type in a dose-dependent manner. Dev Biol. 1998 Nov 15;203(2):400–411. doi: 10.1006/dbio.1998.9064. [DOI] [PubMed] [Google Scholar]
  27. Gustafson K., Boulianne G. L. Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome. 1996 Feb;39(1):174–182. doi: 10.1139/g96-023. [DOI] [PubMed] [Google Scholar]
  28. John A., Smith S. T., Jaynes J. B. Inserting the Ftz homeodomain into engrailed creates a dominant transcriptional repressor that specifically turns off Ftz target genes in vivo. Development. 1995 Jun;121(6):1801–1813. doi: 10.1242/dev.121.6.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kagoshima H., Shigesada K., Satake M., Ito Y., Miyoshi H., Ohki M., Pepling M., Gergen P. The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet. 1993 Oct;9(10):338–341. doi: 10.1016/0168-9525(93)90026-e. [DOI] [PubMed] [Google Scholar]
  30. Kelley R. L., Solovyeva I., Lyman L. M., Richman R., Solovyev V., Kuroda M. I. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell. 1995 Jun 16;81(6):867–877. doi: 10.1016/0092-8674(95)90007-1. [DOI] [PubMed] [Google Scholar]
  31. Kim-Ha J., Kerr K., Macdonald P. M. Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell. 1995 May 5;81(3):403–412. doi: 10.1016/0092-8674(95)90393-3. [DOI] [PubMed] [Google Scholar]
  32. Klingler M., Gergen J. P. Regulation of runt transcription by Drosophila segmentation genes. Mech Dev. 1993 Sep;43(1):3–19. doi: 10.1016/0925-4773(93)90019-t. [DOI] [PubMed] [Google Scholar]
  33. Kramer S. G., Jinks T. M., Schedl P., Gergen J. P. Direct activation of Sex-lethal transcription by the Drosophila runt protein. Development. 1999 Jan;126(1):191–200. doi: 10.1242/dev.126.1.191. [DOI] [PubMed] [Google Scholar]
  34. Macdonald P. M., Struhl G. cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature. 1988 Dec 8;336(6199):595–598. doi: 10.1038/336595a0. [DOI] [PubMed] [Google Scholar]
  35. Manseau L., Baradaran A., Brower D., Budhu A., Elefant F., Phan H., Philp A. V., Yang M., Glover D., Kaiser K. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn. 1997 Jul;209(3):310–322. doi: 10.1002/(SICI)1097-0177(199707)209:3<310::AID-AJA6>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  36. Markussen F. H., Michon A. M., Breitwieser W., Ephrussi A. Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development. 1995 Nov;121(11):3723–3732. doi: 10.1242/dev.121.11.3723. [DOI] [PubMed] [Google Scholar]
  37. Matthews K. A., Miller D. F., Kaufman T. C. Developmental distribution of RNA and protein products of the Drosophila alpha-tubulin gene family. Dev Biol. 1989 Mar;132(1):45–61. doi: 10.1016/0012-1606(89)90203-0. [DOI] [PubMed] [Google Scholar]
  38. Morrissey D., Askew D., Raj L., Weir M. Functional dissection of the paired segmentation gene in Drosophila embryos. Genes Dev. 1991 Sep;5(9):1684–1696. doi: 10.1101/gad.5.9.1684. [DOI] [PubMed] [Google Scholar]
  39. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30;287(5785):795–801. doi: 10.1038/287795a0. [DOI] [PubMed] [Google Scholar]
  40. O'Neill E. M., Rebay I., Tjian R., Rubin G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell. 1994 Jul 15;78(1):137–147. doi: 10.1016/0092-8674(94)90580-0. [DOI] [PubMed] [Google Scholar]
  41. Okuda T., van Deursen J., Hiebert S. W., Grosveld G., Downing J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996 Jan 26;84(2):321–330. doi: 10.1016/s0092-8674(00)80986-1. [DOI] [PubMed] [Google Scholar]
  42. Otto F., Thornell A. P., Crompton T., Denzel A., Gilmour K. C., Rosewell I. R., Stamp G. W., Beddington R. S., Mundlos S., Olsen B. R. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997 May 30;89(5):765–771. doi: 10.1016/s0092-8674(00)80259-7. [DOI] [PubMed] [Google Scholar]
  43. Poole S. J., Kornberg T. B. Modifying expression of the engrailed gene of Drosophila melanogaster. Development. 1988;104 (Suppl):85–93. doi: 10.1242/dev.104.Supplement.85. [DOI] [PubMed] [Google Scholar]
  44. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rørth P. Gal4 in the Drosophila female germline. Mech Dev. 1998 Nov;78(1-2):113–118. doi: 10.1016/s0925-4773(98)00157-9. [DOI] [PubMed] [Google Scholar]
  46. Sallés F. J., Lieberfarb M. E., Wreden C., Gergen J. P., Strickland S. Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science. 1994 Dec 23;266(5193):1996–1999. doi: 10.1126/science.7801127. [DOI] [PubMed] [Google Scholar]
  47. Staehling-Hampton K., Jackson P. D., Clark M. J., Brand A. H., Hoffmann F. M. Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryos induced by decapentaplegic but not 60A. Cell Growth Differ. 1994 Jun;5(6):585–593. [PubMed] [Google Scholar]
  48. Struhl G. Near-reciprocal phenotypes caused by inactivation or indiscriminate expression of the Drosophila segmentation gene ftz. Nature. 1985 Dec 19;318(6047):677–680. doi: 10.1038/318677a0. [DOI] [PubMed] [Google Scholar]
  49. Theurkauf W. E., Baum H., Bo J., Wensink P. C. Tissue-specific and constitutive alpha-tubulin genes of Drosophila melanogaster code for structurally distinct proteins. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8477–8481. doi: 10.1073/pnas.83.22.8477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  51. Tracey W. D., Jr, Pepling M. E., Horb M. E., Thomsen G. H., Gergen J. P. A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood. Development. 1998 Apr;125(8):1371–1380. doi: 10.1242/dev.125.8.1371. [DOI] [PubMed] [Google Scholar]
  52. Tsai C. C., Kramer S. G., Gergen J. P. Pair-rule gene runt restricts orthodenticle expression to the presumptive head of the Drosophila embryo. Dev Genet. 1998;23(1):35–44. doi: 10.1002/(SICI)1520-6408(1998)23:1<35::AID-DVG4>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  53. Tsai C., Gergen J. P. Gap gene properties of the pair-rule gene runt during Drosophila segmentation. Development. 1994 Jun;120(6):1671–1683. doi: 10.1242/dev.120.6.1671. [DOI] [PubMed] [Google Scholar]
  54. Wang C., Dickinson L. K., Lehmann R. Genetics of nanos localization in Drosophila. Dev Dyn. 1994 Feb;199(2):103–115. doi: 10.1002/aja.1001990204. [DOI] [PubMed] [Google Scholar]
  55. Wang Q., Stacy T., Binder M., Marin-Padilla M., Sharpe A. H., Speck N. A. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3444–3449. doi: 10.1073/pnas.93.8.3444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yang M. Y., Armstrong J. D., Vilinsky I., Strausfeld N. J., Kaiser K. Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron. 1995 Jul;15(1):45–54. doi: 10.1016/0896-6273(95)90063-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES