Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):285–297. doi: 10.1093/genetics/154.1.285

A novel Drosophila alkaline phosphatase specific to the ellipsoid body of the adult brain and the lower Malpighian (renal) tubule.

M Y Yang 1, Z Wang 1, M MacPherson 1, J A Dow 1, K Kaiser 1
PMCID: PMC1460921  PMID: 10628988

Abstract

Two independent Drosophila melanogaster P(GAL4) enhancer-trap lines revealed identical GAL4-directed expression patterns in the ellipsoid body of the brain and in the Malpighian (renal) tubules in the abdomen. Both P-element insertions mapped to the same chromosomal site (100B2). The genomic locus, as characterized by plasmid rescue of flanking DNA, restriction mapping, and DNA sequencing, revealed the two P(GAL4) elements to be inserted in opposite orientations, only 46 bp apart. Three genes flanking the insertions have been identified. Calcineurin A1 (previously mapped to 21E-F) lies to one side, and two very closely linked genes lie to the other. The nearer encodes Aph-4, the first Drosophila alkaline phosphatase gene to be identified; the more distant gene [l(3)96601] is novel, with a head-elevated expression, and with distant similarity to transcription regulatory elements. Both in situ hybridization with Aph-4 probes and direct histochemical determination of alkaline phosphatase activity precisely matches the enhancer-trap pattern reported by the original lines. Although the P-element insertions are not recessive lethals, they display tubule phenotypes in both heterozygotes and homozygotes. Rates of fluid secretion in tubules from c507 homozygotes are reduced, both basally, and after stimulation by CAP(2b), cAMP, or Drosophila leucokinin. The P-element insertions also disrupt the expression of Aph-4, causing misexpression in the tubule main segment. This disruption extends to tubule pigmentation, with c507 homozygotes displaying white-like transparent main segments. These results suggest that Aph-4, while possessing a very narrow range of expression, nonetheless plays an important role in epithelial function.

Full Text

The Full Text of this article is available as a PDF (788.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKMAN L., JOHNSON F. M. VARIATIONS IN LARVAL ALKALINE PHOSPHATASE CONTROLLED BY APH ALLELES IN DROSOPHILA MELANOGASTER. Genetics. 1964 May;49:829–835. doi: 10.1093/genetics/49.5.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  3. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Chung H. J., Shaffer C., MacIntyre R. Molecular characterization of the lysosomal acid phosphatase from Drosophila melanogaster. Mol Gen Genet. 1996 Mar 20;250(5):635–646. doi: 10.1007/BF02174451. [DOI] [PubMed] [Google Scholar]
  6. Crawford K., Weissig H., Binette F., Millán J. L., Goetinck P. F. Tissue-nonspecific alkaline phosphatase participates in the establishment and growth of feather germs in embryonic chick skin cultures. Dev Dyn. 1995 Sep;204(1):48–56. doi: 10.1002/aja.1002040107. [DOI] [PubMed] [Google Scholar]
  7. Davies S. A., Stewart E. J., Huesmann G. R., Skaer N. J., Maddrell S. H., Tublitz N. J., Dow J. A. Neuropeptide stimulation of the nitric oxide signaling pathway in Drosophila melanogaster Malpighian tubules. Am J Physiol. 1997 Aug;273(2 Pt 2):R823–R827. doi: 10.1152/ajpregu.1997.273.2.R823. [DOI] [PubMed] [Google Scholar]
  8. Deák P., Omar M. M., Saunders R. D., Pál M., Komonyi O., Szidonya J., Maróy P., Zhang Y., Ashburner M., Benos P. P-element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: correlation of physical and cytogenetic maps in chromosomal region 86E-87F. Genetics. 1997 Dec;147(4):1697–1722. doi: 10.1093/genetics/147.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dow J. A., Maddrell S. H., Görtz A., Skaer N. J., Brogan S., Kaiser K. The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. J Exp Biol. 1994 Dec;197:421–428. doi: 10.1242/jeb.197.1.421. [DOI] [PubMed] [Google Scholar]
  10. Friede R. L. A quantitative mapping of alkaline phosphatase in the brain of the rhesus monkey. J Neurochem. 1966 Mar;13(3):197–203. doi: 10.1111/j.1471-4159.1966.tb07513.x. [DOI] [PubMed] [Google Scholar]
  11. Frisardi M. C., MacIntyre R. J. Position effect variegation of an acid phosphatase gene in Drosophila melanogaster. Mol Gen Genet. 1984;197(3):403–413. doi: 10.1007/BF00329936. [DOI] [PubMed] [Google Scholar]
  12. Guerini D., Montell C., Klee C. B. Molecular cloning and characterization of the genes encoding the two subunits of Drosophila melanogaster calcineurin. J Biol Chem. 1992 Nov 5;267(31):22542–22549. [PubMed] [Google Scholar]
  13. Guo Y., Gillan A., Török T., Kiss I., Dow J. A., Kaiser K. Site-selected mutagenesis of the Drosophila second chromosome via plasmid rescue of lethal P-element insertions. Genome Res. 1996 Oct;6(10):972–979. doi: 10.1101/gr.6.10.972. [DOI] [PubMed] [Google Scholar]
  14. Harper R. A., Armstrong F. B. Alkaline phosphatase of Drosophila melanogaster. I. Partial purification and characterization. Biochem Genet. 1972 Feb;6(1):75–82. doi: 10.1007/BF00485968. [DOI] [PubMed] [Google Scholar]
  15. Harper R. A., Armstrong F. B. Alkaline phosphatase of Drosophila melanogaster. II. Biochemical comparison among four allelic forms. Biochem Genet. 1973 Sep;10(1):29–38. doi: 10.1007/BF00485746. [DOI] [PubMed] [Google Scholar]
  16. Harris H. The human alkaline phosphatases: what we know and what we don't know. Clin Chim Acta. 1990 Jan 15;186(2):133–150. doi: 10.1016/0009-8981(90)90031-m. [DOI] [PubMed] [Google Scholar]
  17. Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henthorn P. S., Whyte M. P. Missense mutations of the tissue-nonspecific alkaline phosphatase gene in hypophosphatasia. Clin Chem. 1992 Dec;38(12):2501–2505. [PubMed] [Google Scholar]
  19. Ilius M., Wolf R., Heisenberg M. The central complex of Drosophila melanogaster is involved in flight control: studies on mutants and mosaics of the gene ellipsoid body open. J Neurogenet. 1994 Jul;9(3):189–206. doi: 10.3109/01677069409167279. [DOI] [PubMed] [Google Scholar]
  20. Itoh M., Takeda S., Yamamoto H., Izumi S., Tomino S., Eguchi M. Cloning and sequence analysis of membrane-bound alkaline phosphatase cDNA of the silkworm, Bombyx mori. Biochim Biophys Acta. 1991 Dec 2;1129(1):135–138. doi: 10.1016/0167-4781(91)90229-f. [DOI] [PubMed] [Google Scholar]
  21. Kloss B., Price J. L., Saez L., Blau J., Rothenfluh A., Wesley C. S., Young M. W. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell. 1998 Jul 10;94(1):97–107. doi: 10.1016/s0092-8674(00)81225-8. [DOI] [PubMed] [Google Scholar]
  22. Knoll B. J., Rothblum K. N., Longley M. Nucleotide sequence of the human placental alkaline phosphatase gene. Evolution of the 5' flanking region by deletion/substitution. J Biol Chem. 1988 Aug 25;263(24):12020–12027. [PubMed] [Google Scholar]
  23. Manes T., Glade K., Ziomek C. A., Millán J. L. Genomic structure and comparison of mouse tissue-specific alkaline phosphatase genes. Genomics. 1990 Nov;8(3):541–554. doi: 10.1016/0888-7543(90)90042-s. [DOI] [PubMed] [Google Scholar]
  24. Mayahara H., Hirano H., Saito T., Ogawa K. The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie. 1967;11(1):88–96. doi: 10.1007/BF00326615. [DOI] [PubMed] [Google Scholar]
  25. Millán J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A. 1988 May;85(9):3024–3028. doi: 10.1073/pnas.85.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mori S., Nagano M. Electron-microscopic cytochemistry of alkaline-phosphatase activity in endothelium, pericytes and oligodendrocytes in the rat brain. Histochemistry. 1985;82(3):225–231. doi: 10.1007/BF00501399. [DOI] [PubMed] [Google Scholar]
  27. NANDY K., BOURNE G. H. ALKALINE PHOSPHATASES IN BRAIN AND SPINAL CORD. Nature. 1963 Dec 21;200:1216–1217. doi: 10.1038/2001216a0. [DOI] [PubMed] [Google Scholar]
  28. Nighorn A., Healy M. J., Davis R. L. The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron. 1991 Mar;6(3):455–467. doi: 10.1016/0896-6273(91)90253-v. [DOI] [PubMed] [Google Scholar]
  29. O'Connell P. O., Rosbash M. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 1984 Jul 11;12(13):5495–5513. doi: 10.1093/nar/12.13.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. O'Donnell M. J., Dow J. A., Huesmann G. R., Tublitz N. J., Maddrell S. H. Separate control of anion and cation transport in malpighian tubules of Drosophila Melanogaster. J Exp Biol. 1996 May;199(Pt 5):1163–1175. doi: 10.1242/jeb.199.5.1163. [DOI] [PubMed] [Google Scholar]
  31. O'Donnell M. J., Maddrell S. H. Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila. J Exp Biol. 1995 Aug;198(Pt 8):1647–1653. doi: 10.1242/jeb.198.8.1647. [DOI] [PubMed] [Google Scholar]
  32. O'Donnell M. J., Rheault M. R., Davies S. A., Rosay P., Harvey B. J., Maddrell S. H., Kaiser K., Dow J. A. Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells. Am J Physiol. 1998 Apr;274(4 Pt 2):R1039–R1049. doi: 10.1152/ajpregu.1998.274.4.R1039. [DOI] [PubMed] [Google Scholar]
  33. O'Kane C. J., Gehring W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9123–9127. doi: 10.1073/pnas.84.24.9123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Renn S. C., Armstrong J. D., Yang M., Wang Z., An X., Kaiser K., Taghert P. H. Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol. 1999 Nov 5;41(2):189–207. [PubMed] [Google Scholar]
  35. Schneiderman H., Young W. J., Childs B. Patterns of alkaline phosphatase in developing Drosophila. Science. 1966 Jan 28;151(3709):461–463. doi: 10.1126/science.151.3709.461. [DOI] [PubMed] [Google Scholar]
  36. Schubiger M., Feng Y., Fambrough D. M., Palka J. A mutation of the Drosophila sodium pump alpha subunit gene results in bang-sensitive paralysis. Neuron. 1994 Feb;12(2):373–381. doi: 10.1016/0896-6273(94)90278-x. [DOI] [PubMed] [Google Scholar]
  37. Song Z. M., Brookes S. J., Costa M. Characterization of alkaline phosphatase-reactive neurons in the guinea-pig small intestine. Neuroscience. 1994 Dec;63(4):1153–1167. doi: 10.1016/0306-4522(94)90580-0. [DOI] [PubMed] [Google Scholar]
  38. Sood P. P., Sinha S. P. A comparative histochemical study of alkaline phosphatase and acetylcholinesterase in the hind-brain of Channa punctatus and Heteropneustes fossils. Folia Histochem Cytochem (Krakow) 1983;21(2):107–114. [PubMed] [Google Scholar]
  39. Sowadski J. M., Handschumacher M. D., Murthy H. M., Foster B. A., Wyckoff H. W. Refined structure of alkaline phosphatase from Escherichia coli at 2.8 A resolution. J Mol Biol. 1985 Nov 20;186(2):417–433. doi: 10.1016/0022-2836(85)90115-9. [DOI] [PubMed] [Google Scholar]
  40. Strauss R., Heisenberg M. A higher control center of locomotor behavior in the Drosophila brain. J Neurosci. 1993 May;13(5):1852–1861. doi: 10.1523/JNEUROSCI.13-05-01852.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sugimura K., Mizutani A. Histochemical and cytochemical studies of alkaline phosphatase activity in the synapses of rat brain. Histochemistry. 1979 Jun 18;61(2):123–129. doi: 10.1007/BF00496524. [DOI] [PubMed] [Google Scholar]
  42. Sözen M. A., Armstrong J. D., Yang M., Kaiser K., Dow J. A. Functional domains are specified to single-cell resolution in a Drosophila epithelium. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5207–5212. doi: 10.1073/pnas.94.10.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Trowsdale J., Martin D., Bicknell D., Campbell I. Alkaline phosphatases. Biochem Soc Trans. 1990 Apr;18(2):178–180. doi: 10.1042/bst0180178. [DOI] [PubMed] [Google Scholar]
  44. Waymire K. G., Mahuren J. D., Jaje J. M., Guilarte T. R., Coburn S. P., MacGregor G. R. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet. 1995 Sep;11(1):45–51. doi: 10.1038/ng0995-45. [DOI] [PubMed] [Google Scholar]
  45. Weiss M. J., Henthorn P. S., Lafferty M. A., Slaughter C., Raducha M., Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7182–7186. doi: 10.1073/pnas.83.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang M. Y., Armstrong J. D., Vilinsky I., Strausfeld N. J., Kaiser K. Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron. 1995 Jul;15(1):45–54. doi: 10.1016/0896-6273(95)90063-2. [DOI] [PubMed] [Google Scholar]
  47. Zisapel N., Haklai R. Localization of an alkaline phosphatase and other synaptic vesicle proteins. Neuroscience. 1980;5(12):2297–2303. doi: 10.1016/0306-4522(80)90145-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES