Skip to main content
Genetics logoLink to Genetics
. 2000 Jan;154(1):323–332. doi: 10.1093/genetics/154.1.323

A chromosome-based model for estimating the number of conserved segments between pairs of species from comparative genetic maps.

D Waddington 1, A J Springbett 1, D W Burt 1
PMCID: PMC1460923  PMID: 10628991

Abstract

Comparative genetic maps of two species allow insights into the rearrangements of their genomes since divergence from a common ancestor. When the map details the positions of genes (or any set of orthologous DNA sequences) on chromosomes, syntenic blocks of one or more genes may be identified and used, with appropriate models, to estimate the number of chromosomal segments with conserved content conserved between species. We propose a model for the distribution of the lengths of unobserved segments on each chromosome that allows for widely differing chromosome lengths. The model uses as data either the counts of genes in a syntenic block or the distance between extreme members of a block, or both. The parameters of the proposed segment length distribution, estimated by maximum likelihood, give predictions of the number of conserved segments per chromosome. The model is applied to data from two comparative maps for the chicken, one with human and one with mouse.

Full Text

The Full Text of this article is available as a PDF (134.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson L., Archibald A., Ashburner M., Audun S., Barendse W., Bitgood J., Bottema C., Broad T., Brown S., Burt D. Comparative genome organization of vertebrates. The First International Workshop on Comparative Genome Organization. Mamm Genome. 1996 Oct;7(10):717–734. doi: 10.1007/s003359900222. [DOI] [PubMed] [Google Scholar]
  2. Bengtsson B. O., Levan K. K., Levan G. Measuring genome reorganization from synteny data. Cytogenet Cell Genet. 1993;64(3-4):198–200. doi: 10.1159/000133574. [DOI] [PubMed] [Google Scholar]
  3. Burt D. W., Bumstead N., Bitgood J. J., Ponce de Leon F. A., Crittenden L. B. Chicken genome mapping: a new era in avian genetics. Trends Genet. 1995 May;11(5):190–194. doi: 10.1016/s0168-9525(00)89042-3. [DOI] [PubMed] [Google Scholar]
  4. Carver E. A., Stubbs L. Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res. 1997 Dec;7(12):1123–1137. doi: 10.1101/gr.7.12.1123. [DOI] [PubMed] [Google Scholar]
  5. Ehrlich J., Sankoff D., Nadeau J. H. Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics. 1997 Sep;147(1):289–296. doi: 10.1093/genetics/147.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones C. T., Morrice D. R., Paton I. R., Burt D. W. Gene homologs on human chromosome 15q21-q26 and a chicken microchromosome identify a new conserved segment. Mamm Genome. 1997 Jun;8(6):436–440. doi: 10.1007/s003359900463. [DOI] [PubMed] [Google Scholar]
  7. Manly K. F. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome. 1993;4(6):303–313. doi: 10.1007/BF00357089. [DOI] [PubMed] [Google Scholar]
  8. Morton N. E. Parameters of the human genome. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7474–7476. doi: 10.1073/pnas.88.17.7474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nadeau J. H., Sankoff D. Counting on comparative maps. Trends Genet. 1998 Dec;14(12):495–501. doi: 10.1016/s0168-9525(98)01607-2. [DOI] [PubMed] [Google Scholar]
  10. Nadeau J. H., Taylor B. A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(3):814–818. doi: 10.1073/pnas.81.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. O'Brien S. J., Wienberg J., Lyons L. A. Comparative genomics: lessons from cats. Trends Genet. 1997 Oct;13(10):393–399. doi: 10.1016/s0168-9525(97)01297-3. [DOI] [PubMed] [Google Scholar]
  12. O'Brien S. J., Womack J. E., Lyons L. A., Moore K. J., Jenkins N. A., Copeland N. G. Anchored reference loci for comparative genome mapping in mammals. Nat Genet. 1993 Feb;3(2):103–112. doi: 10.1038/ng0293-103. [DOI] [PubMed] [Google Scholar]
  13. Pitel F., Fillon V., Heimel C., Le Fur N., el Khadir-Mounier C., Douaire M., Gellin J., Vignal A. Mapping of FASN and ACACA on two chicken microchromosomes disrupts the human 17q syntenic group well conserved in mammals. Mamm Genome. 1998 Apr;9(4):297–300. doi: 10.1007/s003359900752. [DOI] [PubMed] [Google Scholar]
  14. Postlethwait J. H., Yan Y. L., Gates M. A., Horne S., Amores A., Brownlie A., Donovan A., Egan E. S., Force A., Gong Z. Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998 Apr;18(4):345–349. doi: 10.1038/ng0498-345. [DOI] [PubMed] [Google Scholar]
  15. Rodionov A. V. Micro vs macro: strukturno-funktsional'naia organizatsiia micro- i macrokhromosom ptits. Genetika. 1996 May;32(5):597–608. [PubMed] [Google Scholar]
  16. Sankoff D., Ferretti V., Nadeau J. H. Conserved segment identification. J Comput Biol. 1997 Winter;4(4):559–565. doi: 10.1089/cmb.1997.4.559. [DOI] [PubMed] [Google Scholar]
  17. Womack J. E., Kata S. R. Bovine genome mapping: evolutionary inference and the power of comparative genomics. Curr Opin Genet Dev. 1995 Dec;5(6):725–733. doi: 10.1016/0959-437x(95)80004-o. [DOI] [PubMed] [Google Scholar]
  18. Zakharov I. A., Nikiforov V. S., Stepaniuk E. V. Interval'nye otsenki kombinatornykh mer skhodstva poriadkov gomologichnykh genov. Genetika. 1995 Aug;31(8):1163–1167. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES