Skip to main content
Genetics logoLink to Genetics
. 2000 Feb;154(2):823–835. doi: 10.1093/genetics/154.2.823

Saturation mapping of a gene-rich recombination hot spot region in wheat.

J D Faris 1, K M Haen 1, B S Gill 1
PMCID: PMC1460934  PMID: 10655233

Abstract

Physical mapping of wheat chromosomes has revealed small chromosome segments of high gene density and frequent recombination interspersed with relatively large regions of low gene density and infrequent recombination. We constructed a detailed genetic and physical map of one highly recombinant region on the long arm of chromosome 5B. This distally located region accounts for 4% of the physical size of the long arm and at least 30% of the recombination along the entire chromosome. Multiple crossovers occurred within this region, and the degree of recombination is at least 11-fold greater than the genomic average. Characteristics of the region such as gene order and frequency of recombination appear to be conserved throughout the evolution of the Triticeae. The region is more prone to chromosome breakage by gametocidal gene action than gene-poor regions, and evidence for genomic instability was implied by loss of gene collinearity for six loci among the homeologous regions. These data suggest that a unique level of chromatin organization exists within gene-rich recombination hot spots. The many agronomically important genes in this region should be accessible by positional cloning.

Full Text

The Full Text of this article is available as a PDF (230.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
  2. Bollag R. J., Waldman A. S., Liskay R. M. Homologous recombination in mammalian cells. Annu Rev Genet. 1989;23:199–225. doi: 10.1146/annurev.ge.23.120189.001215. [DOI] [PubMed] [Google Scholar]
  3. Borts R. H., Haber J. E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. doi: 10.1093/genetics/123.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Causse M. A., Fulton T. M., Cho Y. G., Ahn S. N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P. C., Harrington S. E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994 Dec;138(4):1251–1274. doi: 10.1093/genetics/138.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Civardi L., Xia Y., Edwards K. J., Schnable P. S., Nikolau B. J. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8268–8272. doi: 10.1073/pnas.91.17.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dooner H. K. Genetic Fine Structure of the BRONZE Locus in Maize. Genetics. 1986 Aug;113(4):1021–1036. doi: 10.1093/genetics/113.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dooner H. K., Kermicle J. L. The Transposable Element Ds Affects the Pattern of Intragenic Recombination at the bz and R Loci in Maize. Genetics. 1986 May;113(1):135–143. doi: 10.1093/genetics/113.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dooner H. K., Martínez-Férez I. M. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell. 1997 Sep;9(9):1633–1646. doi: 10.1105/tpc.9.9.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dvorák J., Chen K. C. Distribution of Nonstructural Variation between Wheat Cultivars along Chromosome Arm 6Bp: Evidence from the Linkage Map and Physical Map of the Arm. Genetics. 1984 Feb;106(2):325–333. doi: 10.1093/genetics/106.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fan Q. Q., Petes T. D. Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2037–2043. doi: 10.1128/mcb.16.5.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Faris J. D., Laddomada B., Gill B. S. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics. 1998 May;149(1):319–327. doi: 10.1093/genetics/149.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Foote T., Roberts M., Kurata N., Sasaki T., Moore G. Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics. 1997 Oct;147(2):801–807. doi: 10.1093/genetics/147.2.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fox M. E., Virgin J. B., Metzger J., Smith G. R. Position- and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7446–7451. doi: 10.1073/pnas.94.14.7446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freeling M. Allelic variation at the level of intragenic recombination. Genetics. 1978 May;89(1):211–224. doi: 10.1093/genetics/89.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gallego F., Feuillet C., Messmer M., Penger A., Graner A., Yano M., Sasaki T., Keller B. Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome. 1998 Jun;41(3):328–336. doi: 10.1139/g98-024. [DOI] [PubMed] [Google Scholar]
  17. Gill K. S., Gill B. S., Endo T. R., Taylor T. Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics. 1996 Dec;144(4):1883–1891. doi: 10.1093/genetics/144.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goyon C., Lichten M. Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase. Mol Cell Biol. 1993 Jan;13(1):373–382. doi: 10.1128/mcb.13.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hohmann U., Endo T. R., Gill K. S., Gill B. S. Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol Gen Genet. 1994 Dec 1;245(5):644–653. doi: 10.1007/BF00282228. [DOI] [PubMed] [Google Scholar]
  20. Ishii T., Brar D. S., Multani D. S., Khush G. S. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome. 1994 Apr;37(2):217–221. doi: 10.1139/g94-030. [DOI] [PubMed] [Google Scholar]
  21. Kilian A., Chen J., Han F., Steffenson B., Kleinhofs A. Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol. 1997 Sep;35(1-2):187–195. [PubMed] [Google Scholar]
  22. Kohli J., Bähler J. Homologous recombination in fission yeast: absence of crossover interference and synaptonemal complex. Experientia. 1994 Mar 15;50(3):295–306. doi: 10.1007/BF01924013. [DOI] [PubMed] [Google Scholar]
  23. Kota R. S., Gill K. S., Gill B. S., Endo T. R. A cytogenetically based physical map of chromosome 1B in common wheat. Genome. 1993 Jun;36(3):548–554. doi: 10.1139/g93-075. [DOI] [PubMed] [Google Scholar]
  24. Künzel G., Korzun L., Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000 Jan;154(1):397–412. doi: 10.1093/genetics/154.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  26. Lichten M., Goldman A. S. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. doi: 10.1146/annurev.ge.29.120195.002231. [DOI] [PubMed] [Google Scholar]
  27. Moore G., Devos K. M., Wang Z., Gale M. D. Cereal genome evolution. Grasses, line up and form a circle. Curr Biol. 1995 Jul 1;5(7):737–739. doi: 10.1016/s0960-9822(95)00148-5. [DOI] [PubMed] [Google Scholar]
  28. Moore G., Foote T., Helentjaris T., Devos K., Kurata N., Gale M. Was there a single ancestral cereal chromosome? Trends Genet. 1995 Mar;11(3):81–82. doi: 10.1016/S0168-9525(00)89005-8. [DOI] [PubMed] [Google Scholar]
  29. Moore G., Roberts M., Aragon-Alcaide L., Foote T. Centromeric sites and cereal chromosome evolution. Chromosoma. 1997 Apr;105(6):321–323. doi: 10.1007/BF02529746. [DOI] [PubMed] [Google Scholar]
  30. Nag D. K., Petes T. D. Physical detection of heteroduplexes during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1993 Apr;13(4):2324–2331. doi: 10.1128/mcb.13.4.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nasuda S., Friebe B., Gill B. S. Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics. 1998 Jun;149(2):1115–1124. doi: 10.1093/genetics/149.2.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nelson J. C., Sorrells M. E., Van Deynze A. E., Lu Y. H., Atkinson M., Bernard M., Leroy P., Faris J. D., Anderson J. A. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics. 1995 Oct;141(2):721–731. doi: 10.1093/genetics/141.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nelson O. E. The WAXY Locus in Maize. II. the Location of the Controlling Element Alleles. Genetics. 1968 Nov;60(3):507–524. doi: 10.1093/genetics/60.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nicolas A., Treco D., Schultes N. P., Szostak J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature. 1989 Mar 2;338(6210):35–39. doi: 10.1038/338035a0. [DOI] [PubMed] [Google Scholar]
  35. Nilsson N. O., Säll T., Bengtsson B. O. Chiasma and recombination data in plants: are they compatible? Trends Genet. 1993 Oct;9(10):344–348. doi: 10.1016/0168-9525(93)90038-j. [DOI] [PubMed] [Google Scholar]
  36. Ogihara Y., Hasegawa K., Tsujimoto H. High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a series of deletion lines induced by gametocidal (Gc) genes of Aegilops speltoides. Mol Gen Genet. 1994 Aug 2;244(3):253–259. doi: 10.1007/BF00285452. [DOI] [PubMed] [Google Scholar]
  37. Ohta K., Shibata T., Nicolas A. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J. 1994 Dec 1;13(23):5754–5763. doi: 10.1002/j.1460-2075.1994.tb06913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ott J. Testing for interference in human genetic maps. J Mol Med (Berl) 1997 Jun;75(6):414–419. doi: 10.1007/s001090050126. [DOI] [PubMed] [Google Scholar]
  39. Patterson G. I., Kubo K. M., Shroyer T., Chandler V. L. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics. 1995 Aug;140(4):1389–1406. doi: 10.1093/genetics/140.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Salamini F., Lorenzoni C. Genetical analysis of glossy mutants of maize. 3. Intracistron recombination and high negative interference at the gl-1 locus. Mol Gen Genet. 1970;108(3):225–232. doi: 10.1007/BF00283352. [DOI] [PubMed] [Google Scholar]
  41. Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
  42. Schnable P. S., Hsia A. P., Nikolau B. J. Genetic recombination in plants. Curr Opin Plant Biol. 1998 Apr;1(2):123–129. doi: 10.1016/s1369-5266(98)80013-7. [DOI] [PubMed] [Google Scholar]
  43. Shiroishi T., Sagai T., Moriwaki K. Hotspots of meiotic recombination in the mouse major histocompatibility complex. Genetica. 1993;88(2-3):187–196. doi: 10.1007/BF02424475. [DOI] [PubMed] [Google Scholar]
  44. Sun H., Treco D., Schultes N. P., Szostak J. W. Double-strand breaks at an initiation site for meiotic gene conversion. Nature. 1989 Mar 2;338(6210):87–90. doi: 10.1038/338087a0. [DOI] [PubMed] [Google Scholar]
  45. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Van Deynze A. E., Nelson J. C., Yglesias E. S., Harrington S. E., Braga D. P., McCouch S. R., Sorrells M. E. Comparative mapping in grasses. Wheat relationships. Mol Gen Genet. 1995 Oct 25;248(6):744–754. doi: 10.1007/BF02191715. [DOI] [PubMed] [Google Scholar]
  47. Werner J. E., Endo T. R., Gill B. S. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11307–11311. doi: 10.1073/pnas.89.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
  49. Xu X., Hsia A. P., Zhang L., Nikolau B. J., Schnable P. S. Meiotic recombination break points resolve at high rates at the 5' end of a maize coding sequence. Plant Cell. 1995 Dec;7(12):2151–2161. doi: 10.1105/tpc.7.12.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zenvirth D., Arbel T., Sherman A., Goldway M., Klein S., Simchen G. Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J. 1992 Sep;11(9):3441–3447. doi: 10.1002/j.1460-2075.1992.tb05423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. de Massy B., Nicolas A. The control in cis of the position and the amount of the ARG4 meiotic double-strand break of Saccharomyces cerevisiae. EMBO J. 1993 Apr;12(4):1459–1466. doi: 10.1002/j.1460-2075.1993.tb05789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES