Skip to main content
Genetics logoLink to Genetics
. 2000 Feb;154(2):513–522. doi: 10.1093/genetics/154.2.513

Palindromes as substrates for multiple pathways of recombination in Escherichia coli.

G A Cromie 1, C B Millar 1, K H Schmidt 1, D R Leach 1
PMCID: PMC1460955  PMID: 10655207

Abstract

A 246-bp imperfect palindrome has the potential to form hairpin structures in single-stranded DNA during replication. Genetic evidence suggests that these structures are converted to double-strand breaks by the SbcCD nuclease and that the double-strand breaks are repaired by recombination. We investigated the role of a range of recombination mutations on the viability of cells containing this palindrome. The palindrome was introduced into the Escherichia coli chromosome by phage lambda lysogenization. This was done in both wt and sbcC backgrounds. Repair of the SbcCD-induced double-strand breaks requires a large number of proteins, including the components of both the RecB and RecF pathways. Repair does not involve PriA-dependent replication fork restart, which suggests that the double-strand break occurs after the replication fork has passed the palindrome. In the absence of SbcCD, recombination still occurs, probably using a gap substrate. This process is also PriA independent, suggesting that there is no collapse of the replication fork. In the absence of RecA, the RecQ helicase is required for palindrome viability in a sbcC mutant, suggesting that a helicase-dependent pathway exists to allow replicative bypass of secondary structures.

Full Text

The Full Text of this article is available as a PDF (165.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Deib A. A., Mahdi A. A., Lloyd R. G. Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12. J Bacteriol. 1996 Dec;178(23):6782–6789. doi: 10.1128/jb.178.23.6782-6789.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson D. G., Kowalczykowski S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell. 1997 Jul 11;90(1):77–86. doi: 10.1016/s0092-8674(00)80315-3. [DOI] [PubMed] [Google Scholar]
  3. Chalker A. F., Leach D. R., Lloyd R. G. Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome. Gene. 1988 Nov 15;71(1):201–205. doi: 10.1016/0378-1119(88)90092-3. [DOI] [PubMed] [Google Scholar]
  4. Clark A. J. rec genes and homologous recombination proteins in Escherichia coli. Biochimie. 1991 Apr;73(4):523–532. doi: 10.1016/0300-9084(91)90124-j. [DOI] [PubMed] [Google Scholar]
  5. Connelly J. C., Kirkham L. A., Leach D. R. The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7969–7974. doi: 10.1073/pnas.95.14.7969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connelly J. C., Leach D. R. The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes Cells. 1996 Mar;1(3):285–291. doi: 10.1046/j.1365-2443.1996.23024.x. [DOI] [PubMed] [Google Scholar]
  7. Connelly J. C., de Leau E. S., Okely E. A., Leach D. R. Overexpression, purification, and characterization of the SbcCD protein from Escherichia coli. J Biol Chem. 1997 Aug 8;272(32):19819–19826. doi: 10.1074/jbc.272.32.19819. [DOI] [PubMed] [Google Scholar]
  8. Cox M. M. A broadening view of recombinational DNA repair in bacteria. Genes Cells. 1998 Feb;3(2):65–78. doi: 10.1046/j.1365-2443.1998.00175.x. [DOI] [PubMed] [Google Scholar]
  9. Dixon D. A., Kowalczykowski S. C. The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell. 1993 Apr 9;73(1):87–96. doi: 10.1016/0092-8674(93)90162-j. [DOI] [PubMed] [Google Scholar]
  10. Feng W. Y., Hays J. B. DNA structures generated during recombination initiated by mismatch repair of UV-irradiated nonreplicating phage DNA in Escherichia coli: requirements for helicase, exonucleases, and RecF and RecBCD functions. Genetics. 1995 Aug;140(4):1175–1186. doi: 10.1093/genetics/140.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson F. P., Leach D. R., Lloyd R. G. Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia coli K-12. J Bacteriol. 1992 Feb;174(4):1222–1228. doi: 10.1128/jb.174.4.1222-1228.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanada K., Ukita T., Kohno Y., Saito K., Kato J., Ikeda H. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3860–3865. doi: 10.1073/pnas.94.8.3860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harmon F. G., Kowalczykowski S. C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 1998 Apr 15;12(8):1134–1144. doi: 10.1101/gad.12.8.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horii Z., Clark A. J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol. 1973 Oct 25;80(2):327–344. doi: 10.1016/0022-2836(73)90176-9. [DOI] [PubMed] [Google Scholar]
  15. Howard-Flanders P., Theriot L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics. 1966 Jun;53(6):1137–1150. doi: 10.1093/genetics/53.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ishioka K., Fukuoh A., Iwasaki H., Nakata A., Shinagawa H. Abortive recombination in Escherichia coli ruv mutants blocks chromosome partitioning. Genes Cells. 1998 Apr;3(4):209–220. doi: 10.1046/j.1365-2443.1998.00185.x. [DOI] [PubMed] [Google Scholar]
  17. Kikuchi A., Asai K. Reverse gyrase--a topoisomerase which introduces positive superhelical turns into DNA. Nature. 1984 Jun 21;309(5970):677–681. doi: 10.1038/309677a0. [DOI] [PubMed] [Google Scholar]
  18. Kogoma T., Cadwell G. W., Barnard K. G., Asai T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol. 1996 Mar;178(5):1258–1264. doi: 10.1128/jb.178.5.1258-1264.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuzminov A. Collapse and repair of replication forks in Escherichia coli. Mol Microbiol. 1995 May;16(3):373–384. doi: 10.1111/j.1365-2958.1995.tb02403.x. [DOI] [PubMed] [Google Scholar]
  21. Leach D. R. Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays. 1994 Dec;16(12):893–900. doi: 10.1002/bies.950161207. [DOI] [PubMed] [Google Scholar]
  22. Leach D. R., Okely E. A., Pinder D. J. Repair by recombination of DNA containing a palindromic sequence. Mol Microbiol. 1997 Nov;26(3):597–606. doi: 10.1046/j.1365-2958.1997.6071957.x. [DOI] [PubMed] [Google Scholar]
  23. Leach D., Lindsey J. In vivo loss of supercoiled DNA carrying a palindromic sequence. Mol Gen Genet. 1986 Aug;204(2):322–327. doi: 10.1007/BF00425517. [DOI] [PubMed] [Google Scholar]
  24. Lloyd R. G., Buckman C., Benson F. E. Genetic analysis of conjugational recombination in Escherichia coli K12 strains deficient in RecBCD enzyme. J Gen Microbiol. 1987 Sep;133(9):2531–2538. doi: 10.1099/00221287-133-9-2531. [DOI] [PubMed] [Google Scholar]
  25. Lloyd R. G., Thomas A. A molecular model for conjugational recombination in Escherichia coli K12. Mol Gen Genet. 1984;197(2):328–336. doi: 10.1007/BF00330981. [DOI] [PubMed] [Google Scholar]
  26. Lovett S. T., Kolodner R. D. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2627–2631. doi: 10.1073/pnas.86.8.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McGlynn P., Al-Deib A. A., Liu J., Marians K. J., Lloyd R. G. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol. 1997 Jul 11;270(2):212–221. doi: 10.1006/jmbi.1997.1120. [DOI] [PubMed] [Google Scholar]
  28. Naom I. S., Morton S. J., Leach D. R., Lloyd R. G. Molecular organization of sbcC, a gene that affects genetic recombination and the viability of DNA palindromes in Escherichia coli K-12. Nucleic Acids Res. 1989 Oct 25;17(20):8033–8045. doi: 10.1093/nar/17.20.8033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Picksley S. M., Attfield P. V., Lloyd R. G. Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet. 1984;195(1-2):267–274. doi: 10.1007/BF00332758. [DOI] [PubMed] [Google Scholar]
  30. Picksley S. M., Morton S. J., Lloyd R. G. The recN locus of Escherichia coli K12: molecular analysis and identification of the gene product. Mol Gen Genet. 1985;201(2):301–307. doi: 10.1007/BF00425675. [DOI] [PubMed] [Google Scholar]
  31. Pinder D. J., Blake C. E., Lindsey J. C., Leach D. R. Replication strand preference for deletions associated with DNA palindromes. Mol Microbiol. 1998 May;28(4):719–727. doi: 10.1046/j.1365-2958.1998.00831.x. [DOI] [PubMed] [Google Scholar]
  32. Rosche W. A., Trinh T. Q., Sinden R. R. Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands. J Bacteriol. 1995 Aug;177(15):4385–4391. doi: 10.1128/jb.177.15.4385-4391.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  34. Shurvinton C. E., Lloyd R. G., Benson F. E., Attfield P. V. Genetic analysis and molecular cloning of the Escherichia coli ruv gene. Mol Gen Genet. 1984;194(1-2):322–329. doi: 10.1007/BF00383535. [DOI] [PubMed] [Google Scholar]
  35. Shurvinton C. E., Stahl M. M., Stahl F. W. Large palindromes in the lambda phage genome are preserved in a rec+ host by inhibiting lambda DNA replication. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1624–1628. doi: 10.1073/pnas.84.6.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. St Pierre R., Linn T. A refined vector system for the in vitro construction of single-copy transcriptional or translational fusions to lacZ. Gene. 1996 Feb 22;169(1):65–68. doi: 10.1016/0378-1119(95)00787-3. [DOI] [PubMed] [Google Scholar]
  37. Sun H., Bennett R. J., Maizels N. The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res. 1999 May 1;27(9):1978–1984. doi: 10.1093/nar/27.9.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sun H., Karow J. K., Hickson I. D., Maizels N. The Bloom's syndrome helicase unwinds G4 DNA. J Biol Chem. 1998 Oct 16;273(42):27587–27592. doi: 10.1074/jbc.273.42.27587. [DOI] [PubMed] [Google Scholar]
  39. Taylor A. F., Smith G. R. Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. J Mol Biol. 1985 Sep 20;185(2):431–443. doi: 10.1016/0022-2836(85)90414-0. [DOI] [PubMed] [Google Scholar]
  40. Trinh T. Q., Sinden R. R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature. 1991 Aug 8;352(6335):544–547. doi: 10.1038/352544a0. [DOI] [PubMed] [Google Scholar]
  41. Umezu K., Kolodner R. D. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem. 1994 Nov 25;269(47):30005–30013. [PubMed] [Google Scholar]
  42. Umezu K., Nakayama K., Nakayama H. Escherichia coli RecQ protein is a DNA helicase. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5363–5367. doi: 10.1073/pnas.87.14.5363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang T. C., Smith K. C. Mechanism of sbcB-suppression of the recBC-deficiency in postreplication repair in UV-irradiated Escherichia coli K-12. Mol Gen Genet. 1985;201(2):186–191. doi: 10.1007/BF00425658. [DOI] [PubMed] [Google Scholar]
  44. Webb B. L., Cox M. M., Inman R. B. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell. 1997 Oct 31;91(3):347–356. doi: 10.1016/s0092-8674(00)80418-3. [DOI] [PubMed] [Google Scholar]
  45. Wertman K. F., Wyman A. R., Botstein D. Host/vector interactions which affect the viability of recombinant phage lambda clones. Gene. 1986;49(2):253–262. doi: 10.1016/0378-1119(86)90286-6. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES