Skip to main content
Genetics logoLink to Genetics
. 2000 Feb;154(2):771–776. doi: 10.1093/genetics/154.2.771

A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila.

D C Presgraves 1
PMCID: PMC1460966  PMID: 10655228

Abstract

Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Here I test whether the target of Wolbachia-induced sperm modification is the male pronucleus (e.g., DNA or pronuclear proteins) or some extranuclear factor from the sperm required for embryonic development (e.g., the paternal centrosome). I distinguish between these hypotheses by crossing gynogenetic Drosophila melanogaster females to infected males. Gynogenetic females produce diploid eggs whose normal development requires no male pronucleus but still depends on extranuclear paternal factors. I show that when gynogenetic females are crossed to infected males, uniparental progeny with maternally derived chromosomes result. This finding shows that Wolbachia impair the male pronucleus but no extranuclear component of the sperm.

Full Text

The Full Text of this article is available as a PDF (98.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourtzis K., Dobson S. L., Braig H. R., O'Neill S. L. Rescuing Wolbachia have been overlooked. Nature. 1998 Feb 26;391(6670):852–853. doi: 10.1038/36017. [DOI] [PubMed] [Google Scholar]
  2. Braig H. R., Guzman H., Tesh R. B., O'Neill S. L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature. 1994 Feb 3;367(6462):453–455. doi: 10.1038/367453a0. [DOI] [PubMed] [Google Scholar]
  3. Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
  4. Bressac C., Rousset F. The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol. 1993 May;61(3):226–230. doi: 10.1006/jipa.1993.1044. [DOI] [PubMed] [Google Scholar]
  5. Browning H., Strome S. A sperm-supplied factor required for embryogenesis in C. elegans. Development. 1996 Jan;122(1):391–404. doi: 10.1242/dev.122.1.391. [DOI] [PubMed] [Google Scholar]
  6. Callaini G., Dallai R., Riparbelli M. G. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci. 1997 Jan;110(Pt 2):271–280. doi: 10.1242/jcs.110.2.271. [DOI] [PubMed] [Google Scholar]
  7. Canton A. Una grande scuola compressa in spazi angusti. Attual Dent. 1986 Feb 2;2(4):8-9, 11-2. [PubMed] [Google Scholar]
  8. Fitch K. R., Wakimoto B. T. The paternal effect gene ms(3)sneaky is required for sperm activation and the initiation of embryogenesis in Drosophila melanogaster. Dev Biol. 1998 May 15;197(2):270–282. doi: 10.1006/dbio.1997.8852. [DOI] [PubMed] [Google Scholar]
  9. Fitch K. R., Yasuda G. K., Owens K. N., Wakimoto B. T. Paternal effects in Drosophila: implications for mechanisms of early development. Curr Top Dev Biol. 1998;38:1–34. doi: 10.1016/s0070-2153(08)60243-4. [DOI] [PubMed] [Google Scholar]
  10. Fuyama Y. Genetics of Parthenogenesis in DROSOPHILA MELANOGASTER. I. the Modes of Diploidization in the Gynogenesis Induced by a Male-Sterile Mutant, ms(3)K81. Genetics. 1986 Feb;112(2):237–248. doi: 10.1093/genetics/112.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffmann A. A., Clancy D. J., Merton E. Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics. 1994 Mar;136(3):993–999. doi: 10.1093/genetics/136.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karr T. L., Yang W., Feder M. E. Overcoming cytoplasmic incompatibility in Drosophila. Proc Biol Sci. 1998 Mar 7;265(1394):391–395. doi: 10.1098/rspb.1998.0307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lassy C. W., Karr T. L. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech Dev. 1996 Jun;57(1):47–58. doi: 10.1016/0925-4773(96)00527-8. [DOI] [PubMed] [Google Scholar]
  14. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Neill S. L., Karr T. L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature. 1990 Nov 8;348(6297):178–180. doi: 10.1038/348178a0. [DOI] [PubMed] [Google Scholar]
  16. Poinsot D., Bourtzis K., Markakis G., Savakis C., Merçot H. Wolbachia transfer from Drosophila melanogaster into D. simulans: Host effect and cytoplasmic incompatibility relationships. Genetics. 1998 Sep;150(1):227–237. doi: 10.1093/genetics/150.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reed K. M., Werren J. H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol Reprod Dev. 1995 Apr;40(4):408–418. doi: 10.1002/mrd.1080400404. [DOI] [PubMed] [Google Scholar]
  18. Rousset F., Bouchon D., Pintureau B., Juchault P., Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci. 1992 Nov 23;250(1328):91–98. doi: 10.1098/rspb.1992.0135. [DOI] [PubMed] [Google Scholar]
  19. Ryan S. L., Saul G. B., 2nd Post-fertilization effect of incompatibility factors in Mormoniella. Mol Gen Genet. 1968;103(1):29–36. doi: 10.1007/BF00271154. [DOI] [PubMed] [Google Scholar]
  20. Stouthamer R., Luck R. F., Hamilton W. D. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2424–2427. doi: 10.1073/pnas.87.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sturtevant A H. Genetic Studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. Genetics. 1920 Sep;5(5):488–500. doi: 10.1093/genetics/5.5.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Werren J. H. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. [DOI] [PubMed] [Google Scholar]
  23. Yasuda G. K., Schubiger G., Wakimoto B. T. Genetic characterization of ms (3) K81, a paternal effect gene of Drosophila melanogaster. Genetics. 1995 May;140(1):219–229. doi: 10.1093/genetics/140.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yen J. H., Barr A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature. 1971 Aug 27;232(5313):657–658. doi: 10.1038/232657a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES