Skip to main content
Genetics logoLink to Genetics
. 2000 Mar;154(3):1335–1346. doi: 10.1093/genetics/154.3.1335

Genetics of mutations affecting the development of a barley floral bract.

C Pozzi 1, P Faccioli 1, V Terzi 1, A M Stanca 1, S Cerioli 1, P Castiglioni 1, R Fink 1, R Capone 1, K J Müller 1, G Bossinger 1, W Rohde 1, F Salamini 1
PMCID: PMC1460976  PMID: 10757774

Abstract

Two groups of mutants that affect the morphology of the lemma, a floral bract of barley, are described. The first comprises phenotypes associated with mutant alleles of calcaroides loci. On the lemma of these mutants, a well-organized neomorphic structure is formed, termed the sac. We provide a morphological description of wild-type (WT) and mutant lemmas, based on scanning electron microscopy (SEM), showing that both consist of similar tissues, but that the mutant is characterized by reversed growth polarity. The sac is a unique structure among grasses, and it is remarkable that recessive mutations at five different genetic loci lead to the same organ. The second group of mutants carry recessive alleles of two leafy lemma genes, both of which are necessary to cause the transformation of the lemma into a structure having all characteristics of a vegetative leaf, as shown by SEM analysis. The presence of sheath, blade, and ligule in the mutant lemma suggests that wild-type lemma development is interrupted at a leaf-like stage. The genes cal a, b, C, d, 23, lel1, and lel2 have now been mapped at precise positions on linkage groups 2, 7, 7, 3, 7, 5, and 7, respectively. The mutants considered in this article are unaffected in other floral organs. A model for lemma development is suggested.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohn H. Extent and properties of the regeneration field in the larval legs of cockroaches (Leucophaea maderae) III. Origin of the tissues and determination of symmetry properties in the regenerates. J Embryol Exp Morphol. 1974 Aug;32(1):81–98. [PubMed] [Google Scholar]
  2. Castiglioni P., Pozzi C., Heun M., Terzi V., Müller K. J., Rohde W., Salamini F. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics. 1998 Aug;149(4):2039–2056. doi: 10.1093/genetics/149.4.2039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chuck G., Lincoln C., Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell. 1996 Aug;8(8):1277–1289. doi: 10.1105/tpc.8.8.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fowler J. E., Freeling M. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Dev Genet. 1996;18(3):198–222. doi: 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  5. Kucera J., Lundqvist U., Gustafsson A. Induction of breviaristatum mutants in barley. Hereditas. 1975;80(2):263–278. doi: 10.1111/j.1601-5223.1975.tb01525.x. [DOI] [PubMed] [Google Scholar]
  6. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  7. Meinhardt H. Models of biological pattern formation: common mechanism in plant and animal development. Int J Dev Biol. 1996 Feb;40(1):123–134. [PubMed] [Google Scholar]
  8. Müller K. J., Romano N., Gerstner O., Garcia-Maroto F., Pozzi C., Salamini F., Rohde W. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature. 1995 Apr 20;374(6524):727–730. doi: 10.1038/374727a0. [DOI] [PubMed] [Google Scholar]
  9. Schneeberger R. G., Becraft P. W., Hake S., Freeling M. Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev. 1995 Sep 15;9(18):2292–2304. doi: 10.1101/gad.9.18.2292. [DOI] [PubMed] [Google Scholar]
  10. Sinha N. R., Williams R. E., Hake S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 1993 May;7(5):787–795. doi: 10.1101/gad.7.5.787. [DOI] [PubMed] [Google Scholar]
  11. Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
  12. Stebbins G. L., Price H. J. The Developmental Genetics of the CALCAROIDES Gene in Barley. I. Divergent Expression at the Morphological and Histological Level. Genetics. 1971 Aug;68(4):527–538. doi: 10.1093/genetics/68.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stebbins G. L., Yagil E. The morphogenetic effects of the hooded gene in barley. I. The course of development in hooded and awned genotypes. Genetics. 1966 Sep;54(3):727–741. doi: 10.1093/genetics/54.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tsiantis M., Schneeberger R., Golz J. F., Freeling M., Langdale J. A. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science. 1999 Apr 2;284(5411):154–156. doi: 10.1126/science.284.5411.154. [DOI] [PubMed] [Google Scholar]
  15. Williams-Carrier R. E., Lie Y. S., Hake S., Lemaux P. G. Ectopic expression of the maize kn1 gene phenocopies the Hooded mutant of barley. Development. 1997 Oct;124(19):3737–3745. doi: 10.1242/dev.124.19.3737. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES