Abstract
Steps 6 and 7 of de novo purine synthesis are performed by 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-[(N-succinylamino)carbonyl]-5-aminoimidazole ribonucleotide synthetase (SAICARs), respectively. In vertebrates, a single gene encodes AIRc-SAICARs with domains homologous to Escherichia coli PurE and PurC. We have isolated an AIRc-SAICARs cDNA from Drosophila melanogaster via functional complementation with an E. coli purC purine auxotroph. This cDNA encodes AIRc yet is unable to complement an E. coli purE mutant, suggesting functional differences between Drosophila and E. coli AIRc. In vertebrates, the AIRc-SAICARs gene shares a promoter region with the gene encoding phosphoribosylamidotransferase, which performs the first step in de novo purine synthesis. In Drosophila, the AIRc-SAICARs gene maps to section 11B4-14 of the X chromosome, while the phosphoribosylamidotransferase gene (Prat) maps to chromosome 3; thus, the close linkage of these two genes is not conserved in flies. Three EMS-induced X-linked adenine auxotrophic mutations, ade4(1), ade5(1), and ade5(2), were isolated. Two gamma-radiation-induced (ade5(3) and ade5(4)) and three hybrid dysgenesis-induced (ade5(5), ade5(6), and ade5(8)) alleles were also isolated. Characterization of the auxotrophy and the finding that the hybrid dysgenesis-induced mutations all harbor P transposon sequences within the AIRc-SAICARs gene show that ade5 encodes AIRc-SAICARs.
Full Text
The Full Text of this article is available as a PDF (469.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arkhipova I. R. Promoter elements in Drosophila melanogaster revealed by sequence analysis. Genetics. 1995 Mar;139(3):1359–1369. doi: 10.1093/genetics/139.3.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brayton K. A., Chen Z., Zhou G., Nagy P. L., Gavalas A., Trent J. M., Deaven L. L., Dixon J. E., Zalkin H. Two genes for de novo purine nucleotide synthesis on human chromosome 4 are closely linked and divergently transcribed. J Biol Chem. 1994 Feb 18;269(7):5313–5321. [PubMed] [Google Scholar]
- Chen S., Nagy P. L., Zalkin H. Role of NRF-1 in bidirectional transcription of the human GPAT-AIRC purine biosynthesis locus. Nucleic Acids Res. 1997 May 1;25(9):1809–1816. doi: 10.1093/nar/25.9.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark D. V. Molecular and genetic analyses of Drosophila Prat, which encodes the first enzyme of de novo purine biosynthesis. Genetics. 1994 Feb;136(2):547–557. doi: 10.1093/genetics/136.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark D. V., Sabl J. F., Henikoff S. Repetitive arrays containing a housekeeping gene have altered polytene chromosome morphology in Drosophila. Chromosoma. 1998 May;107(2):96–104. doi: 10.1007/s004120050285. [DOI] [PubMed] [Google Scholar]
- Clark D., Henikoff S. Ordered deletions using exonuclease III. Methods Mol Biol. 1994;31:47–55. doi: 10.1385/0-89603-258-2:47. [DOI] [PubMed] [Google Scholar]
- Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denis V., Boucherie H., Monribot C., Daignan-Fornier B. Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol. 1998 Nov;30(3):557–566. doi: 10.1046/j.1365-2958.1998.01087.x. [DOI] [PubMed] [Google Scholar]
- Ebbole D. J., Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem. 1987 Jun 15;262(17):8274–8287. [PubMed] [Google Scholar]
- Firestine S. M., Davisson V. J. Carboxylases in de novo purine biosynthesis. Characterization of the Gallus gallus bifunctional enzyme. Biochemistry. 1994 Oct 4;33(39):11917–11926. doi: 10.1021/bi00205a030. [DOI] [PubMed] [Google Scholar]
- Firestine S. M., Misialek S., Toffaletti D. L., Klem T. J., Perfect J. R., Davisson V. J. Biochemical role of the Cryptococcus neoformans ADE2 protein in fungal de novo purine biosynthesis. Arch Biochem Biophys. 1998 Mar 1;351(1):123–134. doi: 10.1006/abbi.1997.0512. [DOI] [PubMed] [Google Scholar]
- Firestine S. M., Poon S. W., Mueller E. J., Stubbe J., Davisson V. J. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochemistry. 1994 Oct 4;33(39):11927–11934. doi: 10.1021/bi00205a031. [DOI] [PubMed] [Google Scholar]
- Gavalas A., Dixon J. E., Brayton K. A., Zalkin H. Coexpression of two closely linked avian genes for purine nucleotide synthesis from a bidirectional promoter. Mol Cell Biol. 1993 Aug;13(8):4784–4792. doi: 10.1128/mcb.13.8.4784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavalas A., Zalkin H. Analysis of the chicken GPAT/AIRC bidirectional promoter for de novo purine nucleotide synthesis. J Biol Chem. 1995 Feb 3;270(5):2403–2410. doi: 10.1074/jbc.270.5.2403. [DOI] [PubMed] [Google Scholar]
- Hamilton P. T., Reeve J. N. Sequence divergence of an archaebacterial gene cloned from a mesophilic and a thermophilic methanogen. J Mol Evol. 1985;22(4):351–360. doi: 10.1007/BF02115691. [DOI] [PubMed] [Google Scholar]
- Henikoff S., Eghtedarzadeh M. K. Conserved arrangement of nested genes at the Drosophila Gart locus. Genetics. 1987 Dec;117(4):711–725. doi: 10.1093/genetics/117.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S. Multifunctional polypeptides for purine de novo synthesis. Bioessays. 1987 Jan;6(1):8–13. doi: 10.1002/bies.950060104. [DOI] [PubMed] [Google Scholar]
- Iwahana H., Honda S., Tsujisawa T., Takahashi Y., Adzuma K., Katashima R., Yamaoka T., Moritani M., Yoshimoto K., Itakura M. Rat genomic structure of amidophosphoribosyltransferase, cDNA sequence of aminoimidazole ribonucleotide carboxylase, and cell cycle-dependent expression of these two physically linked genes. Biochim Biophys Acta. 1995 Apr 26;1261(3):369–380. doi: 10.1016/0167-4781(95)00036-g. [DOI] [PubMed] [Google Scholar]
- Janca F. C., Woloshyn E. P., Nash D. Heterogeneity of lethals in a "simple" lethal complementation group. Genetics. 1986 Jan;112(1):43–64. doi: 10.1093/genetics/112.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maniatis T., Hardison R. C., Lacy E., Lauer J., O'Connell C., Quon D., Sim G. K., Efstratiadis A. The isolation of structural genes from libraries of eucaryotic DNA. Cell. 1978 Oct;15(2):687–701. doi: 10.1016/0092-8674(78)90036-3. [DOI] [PubMed] [Google Scholar]
- Minet M., Lacroute F. Cloning and sequencing of a human cDNA coding for a multifunctional polypeptide of the purine pathway by complementation of the ade2-101 mutant in Saccharomyces cerevisiae. Curr Genet. 1990 Nov;18(4):287–291. doi: 10.1007/BF00318209. [DOI] [PubMed] [Google Scholar]
- Mueller E. J., Meyer E., Rudolph J., Davisson V. J., Stubbe J. N5-carboxyaminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli. Biochemistry. 1994 Mar 1;33(8):2269–2278. doi: 10.1021/bi00174a038. [DOI] [PubMed] [Google Scholar]
- Myasnikov A. N., Sasnauskas K. V., Janulaitis A. A., Smirnov M. N. The Saccharomyces cerevisiae ADE1 gene: structure, overexpression and possible regulation by general amino acid control. Gene. 1991 Dec 20;109(1):143–147. doi: 10.1016/0378-1119(91)90600-g. [DOI] [PubMed] [Google Scholar]
- Nash D., Bell J. Larval age and the pattern of DNA synthesis in polytene chromosomes. Can J Genet Cytol. 1968 Mar;10(1):82–90. doi: 10.1139/g68-011. [DOI] [PubMed] [Google Scholar]
- Nash D., Janca F. C. Hypomorphic lethal mutations and their implications for the interpretation of lethal complementation studies in Drosophila. Genetics. 1983 Dec;105(4):957–968. doi: 10.1093/genetics/105.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolfes R. J., Hinnebusch A. G. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol. 1993 Aug;13(8):5099–5111. doi: 10.1128/mcb.13.8.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schild D., Brake A. J., Kiefer M. C., Young D., Barr P. J. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2916–2920. doi: 10.1073/pnas.87.8.2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheets M. D., Ogg S. C., Wickens M. P. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 1990 Oct 11;18(19):5799–5805. doi: 10.1093/nar/18.19.5799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stotz A., Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990 Oct 30;95(1):91–98. doi: 10.1016/0378-1119(90)90418-q. [DOI] [PubMed] [Google Scholar]
- Szankasi P., Heyer W. D., Schuchert P., Kohli J. DNA sequence analysis of the ade6 gene of Schizosaccharomyces pombe. Wild-type and mutant alleles including the recombination host spot allele ade6-M26. J Mol Biol. 1988 Dec 20;204(4):917–925. doi: 10.1016/0022-2836(88)90051-4. [DOI] [PubMed] [Google Scholar]
- Thomas C. B., Arnold W. J., Kelley W. N. Human adenine phosphoribosyltransferase. Purification, subunit structure, and substrate specificity. J Biol Chem. 1973 Apr 10;248(7):2529–2535. [PubMed] [Google Scholar]
- Tiedeman A. A., DeMarini D. J., Parker J., Smith J. M. DNA sequence of the purC gene encoding 5'-phosphoribosyl-5-aminoimidazole-4-N-succinocarboxamide synthetase and organization of the dapA-purC region of Escherichia coli K-12. J Bacteriol. 1990 Oct;172(10):6035–6041. doi: 10.1128/jb.172.10.6035-6041.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiedeman A. A., Keyhani J., Kamholz J., Daum H. A., 3rd, Gots J. S., Smith J. M. Nucleotide sequence analysis of the purEK operon encoding 5'-phosphoribosyl-5-aminoimidazole carboxylase of Escherichia coli K-12. J Bacteriol. 1989 Jan;171(1):205–212. doi: 10.1128/jb.171.1.205-212.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiong S. Y., Keizer C., Nash D., Bleskan J., Patterson D. Drosophila purine auxotrophy: new alleles of adenosine 2 exhibiting a complex visible phenotype. Biochem Genet. 1989 Jun;27(5-6):333–348. doi: 10.1007/BF00554168. [DOI] [PubMed] [Google Scholar]
- Tiong S. Y., Nash D. Genetic analysis of the adenosine3 (Gart) region of the second chromosome of Drosophila melanogaster. Genetics. 1990 Apr;124(4):889–897. doi: 10.1093/genetics/124.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
- Watanabe W., Sampei G., Aiba A., Mizobuchi K. Identification and sequence analysis of Escherichia coli purE and purK genes encoding 5'-phosphoribosyl-5-amino-4-imidazole carboxylase for de novo purine biosynthesis. J Bacteriol. 1989 Jan;171(1):198–204. doi: 10.1128/jb.171.1.198-204.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weng M., Nagy P. L., Zalkin H. Identification of the Bacillus subtilis pur operon repressor. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7455–7459. doi: 10.1073/pnas.92.16.7455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zalkin H., Dixon J. E. De novo purine nucleotide biosynthesis. Prog Nucleic Acid Res Mol Biol. 1992;42:259–287. doi: 10.1016/s0079-6603(08)60578-4. [DOI] [PubMed] [Google Scholar]