Abstract
We have screened for zygotic embryonic lethal mutations affecting cuticular morphology in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Our broad goal was to investigate the use of Nasonia for genetically surveying conservation and change in regulatory gene systems, as a means to understand the diversity of developmental strategies that have arisen during the course of evolution. Specifically, we aim to compare anteroposterior patterning gene functions in two long germ band insects, Nasonia and Drosophila. In Nasonia, unfertilized eggs develop as haploid males while fertilized eggs develop as diploid females, so the entire genome can be screened for recessive zygotic mutations by examining the progeny of F1 females. We describe 74 of >100 lines with embryonic cuticular mutant phenotypes, including representatives of coordinate, gap, pair-rule, segment polarity, homeotic, and Polycomb group functions, as well as mutants with novel phenotypes not directly comparable to those of known Drosophila genes. We conclude that Nasonia is a tractable experimental organism for comparative developmental genetic study. The mutants isolated here have begun to outline the extent of conservation and change in the genetic programs controlling embryonic patterning in Nasonia and Drosophila.
Full Text
The Full Text of this article is available as a PDF (553.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berghammer A., Bucher G., Maderspacher F., Klingler M. A system to efficiently maintain embryonic lethal mutations in the flour beetle Tribolium castaneum. Dev Genes Evol. 1999 Jun;209(6):382–389. doi: 10.1007/s004270050268. [DOI] [PubMed] [Google Scholar]
- Beukeboom L. W. Sex determination in Hymenoptera: a need for genetic and molecular studies. Bioessays. 1995 Sep;17(9):813–817. doi: 10.1002/bies.950170911. [DOI] [PubMed] [Google Scholar]
- Brown S. J., Hilgenfeld R. B., Denell R. E. The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12922–12926. doi: 10.1073/pnas.91.26.12922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S. J., Mahaffey J. P., Lorenzen M. D., Denell R. E., Mahaffey J. W. Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev. 1999 Jul-Aug;1(1):11–15. doi: 10.1046/j.1525-142x.1999.99013.x. [DOI] [PubMed] [Google Scholar]
- Denell R. E., Frederick R. D. Homoeosis in Drosophila: a description of the Polycomb lethal syndrome. Dev Biol. 1983 May;97(1):34–47. doi: 10.1016/0012-1606(83)90061-1. [DOI] [PubMed] [Google Scholar]
- DiNardo S., Kuner J. M., Theis J., O'Farrell P. H. Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell. 1985 Nov;43(1):59–69. doi: 10.1016/0092-8674(85)90012-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobson S. L., Tanouye M. A. Evidence for a genomic imprinting sex determination mechanism in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Genetics. 1998 May;149(1):233–242. doi: 10.1093/genetics/149.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eizinger A., Jungblut B., Sommer R. J. Evolutionary change in the functional specificity of genes. Trends Genet. 1999 May;15(5):197–202. doi: 10.1016/s0168-9525(99)01728-x. [DOI] [PubMed] [Google Scholar]
- Gadau J., Page R. E., Jr, Werren J. H. Mapping of hybrid incompatibility loci in Nasonia. Genetics. 1999 Dec;153(4):1731–1741. doi: 10.1093/genetics/153.4.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grbic M., Nagy L. M., Carroll S. B., Strand M. Polyembryonic development: insect pattern formation in a cellularized environment. Development. 1996 Mar;122(3):795–804. doi: 10.1242/dev.122.3.795. [DOI] [PubMed] [Google Scholar]
- Grbić M., Nagy L. M., Strand M. R. Development of polyembryonic insects: a major departure from typical insect embryogenesis. Dev Genes Evol. 1998 Apr;208(2):69–81. doi: 10.1007/s004270050156. [DOI] [PubMed] [Google Scholar]
- Grbić M., Strand M. R. Shifts in the life history of parasitic wasps correlate with pronounced alterations in early development. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1097–1101. doi: 10.1073/pnas.95.3.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter C. P. Genetics: a touch of elegance with RNAi. Curr Biol. 1999 Jun 17;9(12):R440–R442. doi: 10.1016/s0960-9822(99)80276-0. [DOI] [PubMed] [Google Scholar]
- Ingham P. W., Ish-Horowicz D., Howard K. R. Correlative changes in homoeotic and segmentation gene expression in Krüppel mutant embryos of Drosophila. EMBO J. 1986 Jul;5(7):1659–1665. doi: 10.1002/j.1460-2075.1986.tb04409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelsh R., Weinzierl R. O., White R. A., Akam M. Homeotic gene expression in the locust Schistocerca: an antibody that detects conserved epitopes in Ultrabithorax and abdominal-A proteins. Dev Genet. 1994;15(1):19–31. doi: 10.1002/dvg.1020150104. [DOI] [PubMed] [Google Scholar]
- Kennerdell J. R., Carthew R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell. 1998 Dec 23;95(7):1017–1026. doi: 10.1016/s0092-8674(00)81725-0. [DOI] [PubMed] [Google Scholar]
- Lehmann R., Nüsslein-Volhard C. hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev Biol. 1987 Feb;119(2):402–417. doi: 10.1016/0012-1606(87)90045-5. [DOI] [PubMed] [Google Scholar]
- Macdonald P. M., Ingham P., Struhl G. Isolation, structure, and expression of even-skipped: a second pair-rule gene of Drosophila containing a homeo box. Cell. 1986 Dec 5;47(5):721–734. doi: 10.1016/0092-8674(86)90515-5. [DOI] [PubMed] [Google Scholar]
- Macdonald P. M., Struhl G. A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature. 1986 Dec 11;324(6097):537–545. doi: 10.1038/324537a0. [DOI] [PubMed] [Google Scholar]
- Maderspacher F., Bucher G., Klingler M. Pair-rule and gap gene mutants in the flour beetle Tribolium castaneum. Dev Genes Evol. 1998 Dec;208(10):558–568. doi: 10.1007/s004270050215. [DOI] [PubMed] [Google Scholar]
- Mazur P., Cole K. W., Hall J. W., Schreuders P. D., Mahowald A. P. Cryobiological preservation of Drosophila embryos. Science. 1992 Dec 18;258(5090):1932–1935. doi: 10.1126/science.1470915. [DOI] [PubMed] [Google Scholar]
- Murtha M. T., Leckman J. F., Ruddle F. H. Detection of homeobox genes in development and evolution. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10711–10715. doi: 10.1073/pnas.88.23.10711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30;287(5785):795–801. doi: 10.1038/287795a0. [DOI] [PubMed] [Google Scholar]
- Patel N. H., Martin-Blanco E., Coleman K. G., Poole S. J., Ellis M. C., Kornberg T. B., Goodman C. S. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell. 1989 Sep 8;58(5):955–968. doi: 10.1016/0092-8674(89)90947-1. [DOI] [PubMed] [Google Scholar]
- Perrimon N., Engstrom L., Mahowald A. P. Developmental genetics of the 2E-F region of the Drosophila X chromosome: a region rich in "developmentally important" genes. Genetics. 1984 Nov;108(3):559–572. doi: 10.1093/genetics/108.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petschek J. P., Perrimon N., Mahowald A. P. Region-specific defects in l(1)giant embryos of Drosophila melanogaster. Dev Biol. 1987 Jan;119(1):175–189. doi: 10.1016/0012-1606(87)90219-3. [DOI] [PubMed] [Google Scholar]
- Pultz M. A., Pitt J. N., Alto N. M. Extensive zygotic control of the anteroposterior axis in the wasp Nasonia vitripennis. Development. 1999 Feb;126(4):701–710. doi: 10.1242/dev.126.4.701. [DOI] [PubMed] [Google Scholar]
- Rogers B. T., Kaufman T. C. Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development. 1996 Nov;122(11):3419–3432. doi: 10.1242/dev.122.11.3419. [DOI] [PubMed] [Google Scholar]
- Schüpbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics. 1989 Jan;121(1):101–117. doi: 10.1093/genetics/121.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shippy T. D., Brown S. J., Denell R. E. Molecular characterization of the Tribolium abdominal-A ortholog and implications for the products of the Drosophila gene. Dev Genes Evol. 1998 Jan;207(7):446–452. doi: 10.1007/s004270050135. [DOI] [PubMed] [Google Scholar]
- Simpson-Brose M., Treisman J., Desplan C. Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila. Cell. 1994 Sep 9;78(5):855–865. doi: 10.1016/s0092-8674(94)90622-x. [DOI] [PubMed] [Google Scholar]
- Sommer R. J., Retzlaff M., Goerlich K., Sander K., Tautz D. Evolutionary conservation pattern of zinc-finger domains of Drosophila segmentation genes. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10782–10786. doi: 10.1073/pnas.89.22.10782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stauber M., Jäckle H., Schmidt-Ott U. The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3786–3789. doi: 10.1073/pnas.96.7.3786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strand M. R., Grbic M. The development and evolution of polyembryonic insects. Curr Top Dev Biol. 1997;35:121–159. doi: 10.1016/s0070-2153(08)60258-6. [DOI] [PubMed] [Google Scholar]
- Stuart J. J., Brown S. J., Beeman R. W., Denell R. E. A deficiency of the homeotic complex of the beetle Tribolium. Nature. 1991 Mar 7;350(6313):72–74. doi: 10.1038/350072a0. [DOI] [PubMed] [Google Scholar]
- Wedeen C., Harding K., Levine M. Spatial regulation of Antennapedia and bithorax gene expression by the Polycomb locus in Drosophila. Cell. 1986 Mar 14;44(5):739–748. doi: 10.1016/0092-8674(86)90840-8. [DOI] [PubMed] [Google Scholar]