Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Sep 1;24(17):3313–3316. doi: 10.1093/nar/24.17.3313

Strength of translation initiation signal sequence of mRNA as studied by quantification method: effect of nucleotide substitutions upon translation efficiency in rat preproinsulin mRNA.

Y Iida 1, T Masuda 1
PMCID: PMC146100  PMID: 8811083

Abstract

Concerning the translation initiation signals in vertebrate mRNAs, both the ATG initiation codon and the sequences flanking the initiation codon are required to direct the position of initiation. A consensus sequence for the signal, (GCC)GCC(A or G)CCATGG, has been proposed, but actual initiation sequences differ from it to a greater or lesser degree. In the present report, the translation initiation signal sequences of rat preproinsulin and its mutant mRNAs were analyzed using a quantification method proposed previously. In this method, each 16 nt sequence in the mRNA was characterized by its sample score, which shows strength of the signal. So far, Kozak has constructed a number of preproinsulin mutant mRNAs in which nucleotides flanking the ATG codon are systematically varied, and measured the translation initiation efficiency in terms of the proinsulin product. Her experimental results were well understood on the basis of the strength of the translation initiation signal sequence.

Full Text

The Full Text of this article is available as a PDF (50.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Iida Y. Quantification analysis of 5'-splice signal sequences in mRNA precursors. Mutations in rabbit beta-globin gene. Biochim Biophys Acta. 1989 Apr 12;1007(3):270–276. doi: 10.1016/0167-4781(89)90147-4. [DOI] [PubMed] [Google Scholar]
  2. Kozak M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2662–2666. doi: 10.1073/pnas.92.7.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kozak M. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature. 1984 Mar 15;308(5956):241–246. doi: 10.1038/308241a0. [DOI] [PubMed] [Google Scholar]
  6. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  7. Lida Y. DNA sequences and multivariate statistical analysis. Categorical discrimination approach to 5' splice site signals of mRNA precursors in higher eukaryotes' genes. Comput Appl Biosci. 1987 Jun;3(2):93–98. doi: 10.1093/bioinformatics/3.2.93. [DOI] [PubMed] [Google Scholar]
  8. Lomedico P. T., McAndrew S. J. Eukaryotic ribosomes can recognize preproinsulin initiation codons irrespective of their position relative to the 5' end of mRNA. Nature. 1982 Sep 16;299(5880):221–226. doi: 10.1038/299221a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES