Skip to main content
Genetics logoLink to Genetics
. 2000 Apr;154(4):1439–1450. doi: 10.1093/genetics/154.4.1439

Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data.

E J Feil 1, J M Smith 1, M C Enright 1, B G Spratt 1
PMCID: PMC1461021  PMID: 10747043

Abstract

Multilocus sequence typing (MLST) is a highly discriminatory molecular typing method that defines isolates of bacterial pathogens using the sequences of approximately 450-bp internal fragments of seven housekeeping genes. This technique has been applied to 575 isolates of Streptococcus pneumoniae and identifies a number of discrete clonal complexes. These clonal complexes are typically represented by a single group of isolates sharing identical alleles at all seven loci, plus single-locus variants that differ from this group at only one out of the seven loci. As MLST is highly discriminatory, the members of each clonal complex can be assumed to have a recent common ancestor, and the molecular events that give rise to the single-locus variants can be used to estimate the relative contributions of recombination and mutation to clonal divergence. By comparing the sequences of the variant alleles within each clonal complex with the allele typically found within that clonal complex, we estimate that recombination has generated new alleles at a frequency approximately 10-fold higher than mutation, and that a single nucleotide site is approximately 50 times more likely to change through recombination than mutation. We also demonstrate how to estimate the average length of recombinational replacements from MLST data.

Full Text

The Full Text of this article is available as a PDF (158.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunham R. C., Plummer F. A., Stephens R. S. Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect Immun. 1993 Jun;61(6):2273–2276. doi: 10.1128/iai.61.6.2273-2276.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coffey T. J., Daniels M., Enright M. C., Spratt B. G. Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA-pbp1a region. Microbiology. 1999 Aug;145(Pt 8):2023–2031. doi: 10.1099/13500872-145-8-2023. [DOI] [PubMed] [Google Scholar]
  3. Coffey T. J., Dowson C. G., Daniels M., Zhou J., Martin C., Spratt B. G., Musser J. M. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol Microbiol. 1991 Sep;5(9):2255–2260. doi: 10.1111/j.1365-2958.1991.tb02155.x. [DOI] [PubMed] [Google Scholar]
  4. Coffey T. J., Enright M. C., Daniels M., Morona J. K., Morona R., Hryniewicz W., Paton J. C., Spratt B. G. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol. 1998 Jan;27(1):73–83. doi: 10.1046/j.1365-2958.1998.00658.x. [DOI] [PubMed] [Google Scholar]
  5. Dykhuizen D. E., Green L. Recombination in Escherichia coli and the definition of biological species. J Bacteriol. 1991 Nov;173(22):7257–7268. doi: 10.1128/jb.173.22.7257-7268.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enright M. C., Fenoll A., Griffiths D., Spratt B. G. The three major Spanish clones of penicillin-resistant Streptococcus pneumoniae are the most common clones recovered in recent cases of meningitis in Spain. J Clin Microbiol. 1999 Oct;37(10):3210–3216. doi: 10.1128/jcm.37.10.3210-3216.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enright M. C., Spratt B. G. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998 Nov;144(Pt 11):3049–3060. doi: 10.1099/00221287-144-11-3049. [DOI] [PubMed] [Google Scholar]
  8. Enright M. C., Spratt B. G. Extensive variation in the ddl gene of penicillin-resistant Streptococcus pneumoniae results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. Mol Biol Evol. 1999 Dec;16(12):1687–1695. doi: 10.1093/oxfordjournals.molbev.a026082. [DOI] [PubMed] [Google Scholar]
  9. Enright M. C., Spratt B. G. Multilocus sequence typing. Trends Microbiol. 1999 Dec;7(12):482–487. doi: 10.1016/s0966-842x(99)01609-1. [DOI] [PubMed] [Google Scholar]
  10. Feil E. J., Maiden M. C., Achtman M., Spratt B. G. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol. 1999 Nov;16(11):1496–1502. doi: 10.1093/oxfordjournals.molbev.a026061. [DOI] [PubMed] [Google Scholar]
  11. Feil E., Carpenter G., Spratt B. G. Electrophoretic variation in adenylate kinase of Neisseria meningitidis is due to inter- and intraspecies recombination. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10535–10539. doi: 10.1073/pnas.92.23.10535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feil E., Zhou J., Maynard Smith J., Spratt B. G. A comparison of the nucleotide sequences of the adk and recA genes of pathogenic and commensal Neisseria species: evidence for extensive interspecies recombination within adk. J Mol Evol. 1996 Dec;43(6):631–640. doi: 10.1007/BF02202111. [DOI] [PubMed] [Google Scholar]
  13. Guttman D. S., Dykhuizen D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994 Nov 25;266(5189):1380–1383. doi: 10.1126/science.7973728. [DOI] [PubMed] [Google Scholar]
  14. Holmes E. C., Urwin R., Maiden M. C. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol Biol Evol. 1999 Jun;16(6):741–749. doi: 10.1093/oxfordjournals.molbev.a026159. [DOI] [PubMed] [Google Scholar]
  15. Istock C. A., Duncan K. E., Ferguson N., Zhou X. Sexuality in a natural population of bacteria--Bacillus subtilis challenges the clonal paradigm. Mol Ecol. 1992 Aug;1(2):95–103. doi: 10.1111/j.1365-294x.1992.tb00161.x. [DOI] [PubMed] [Google Scholar]
  16. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K., Caugant D. A. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140–3145. doi: 10.1073/pnas.95.6.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Rourke M., Stevens E. Genetic structure of Neisseria gonorrhoeae populations: a non-clonal pathogen. J Gen Microbiol. 1993 Nov;139(11):2603–2611. doi: 10.1099/00221287-139-11-2603. [DOI] [PubMed] [Google Scholar]
  18. Shi Z. Y., Enright M. C., Wilkinson P., Griffiths D., Spratt B. G. Identification of three major clones of multiply antibiotic-resistant Streptococcus pneumoniae in Taiwanese hospitals by multilocus sequence typing. J Clin Microbiol. 1998 Dec;36(12):3514–3519. doi: 10.1128/jcm.36.12.3514-3519.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993 May 15;90(10):4384–4388. doi: 10.1073/pnas.90.10.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith J. M. The detection and measurement of recombination from sequence data. Genetics. 1999 Oct;153(2):1021–1027. doi: 10.1093/genetics/153.2.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spratt B. G., Maiden M. C. Bacterial population genetics, evolution and epidemiology. Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):701–710. doi: 10.1098/rstb.1999.0423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spratt B. G. Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the internet. Curr Opin Microbiol. 1999 Jun;2(3):312–316. doi: 10.1016/S1369-5274(99)80054-X. [DOI] [PubMed] [Google Scholar]
  23. Spratt B. G. Resistance to antibiotics mediated by target alterations. Science. 1994 Apr 15;264(5157):388–393. doi: 10.1126/science.8153626. [DOI] [PubMed] [Google Scholar]
  24. Suerbaum S., Smith J. M., Bapumia K., Morelli G., Smith N. H., Kunstmann E., Dyrek I., Achtman M. Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12619–12624. doi: 10.1073/pnas.95.21.12619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhou J., Bowler L. D., Spratt B. G. Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Mol Microbiol. 1997 Feb;23(4):799–812. doi: 10.1046/j.1365-2958.1997.2681633.x. [DOI] [PubMed] [Google Scholar]
  26. Zhou J., Spratt B. G. Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene. Mol Microbiol. 1992 Aug;6(15):2135–2146. doi: 10.1111/j.1365-2958.1992.tb01387.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES