Skip to main content
Genetics logoLink to Genetics
. 2000 Apr;154(4):1721–1733. doi: 10.1093/genetics/154.4.1721

Mutual correction of faulty PCNA subunits in temperature-sensitive lethal mus209 mutants of Drosophila melanogaster.

D S Henderson 1, U K Wiegand 1, D G Norman 1, D M Glover 1
PMCID: PMC1461035  PMID: 10747065

Abstract

Proliferating cell nuclear antigen (PCNA) functions in DNA replication as a processivity factor for polymerases delta and epsilon, and in multiple DNA repair processes. We describe two temperature-sensitive lethal alleles (mus209(B1) and mus209(2735)) of the Drosophila PCNA gene that, at temperatures permissive for growth, result in hypersensitivity to DNA-damaging agents, suppression of position-effect variegation, and female sterility in which ovaries are underdeveloped and do not produce eggs. We show by mosaic analysis that the sterility of mus209(B1) is partly due to a failure of germ-line cells to proliferate. Strikingly, mus209(B1) and mus209(2735) interact to restore partial fertility to heteroallelic females, revealing additional roles for PCNA in ovarian development, meiotic recombination, and embryogenesis. We further show that, although mus209(B1) and mus209(2735) homozygotes are each defective in repair of transposase-induced DNA double-strand breaks in somatic cells, this defect is substantially reversed in the heteroallelic mutant genotype. These novel mutations map to adjacent sites on the three-dimensional structure of PCNA, which was unexpected in the context of this observed interallelic complementation. These mutations, as well as four others we describe, reveal new relationships between the structure and function of PCNA.

Full Text

The Full Text of this article is available as a PDF (457.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayyagari R., Impellizzeri K. J., Yoder B. L., Gary S. L., Burgers P. M. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol. 1995 Aug;15(8):4420–4429. doi: 10.1128/mcb.15.8.4420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banga S. S., Bloomquist B. T., Brodberg R. K., Pye Q. N., Larrivee D. C., Mason J. M., Boyd J. B., Pak W. L. Cytogenetic characterization of the 4BC region on the X chromosome of Drosophila melanogaster: localization of the mei-9, norpA and omb genes. Chromosoma. 1986;93(4):341–346. doi: 10.1007/BF00327593. [DOI] [PubMed] [Google Scholar]
  4. Banga S. S., Velazquez A., Boyd J. B. P transposition in Drosophila provides a new tool for analyzing postreplication repair and double-strand break repair. Mutat Res. 1991 Jul;255(1):79–88. doi: 10.1016/0921-8777(91)90020-p. [DOI] [PubMed] [Google Scholar]
  5. Carpenter A. T. EM autoradiographic evidence that DNA synthesis occurs at recombination nodules during meiosis in Drosophila melanogaster females. Chromosoma. 1981;83(1):59–80. doi: 10.1007/BF00286016. [DOI] [PubMed] [Google Scholar]
  6. Chuang L. S., Ian H. I., Koh T. W., Ng H. H., Xu G., Li B. F. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 1997 Sep 26;277(5334):1996–2000. doi: 10.1126/science.277.5334.1996. [DOI] [PubMed] [Google Scholar]
  7. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L. S., Lane D. P., Abbondandolo A., Dogliotti E. Two pathways for base excision repair in mammalian cells. J Biol Chem. 1996 Apr 19;271(16):9573–9578. doi: 10.1074/jbc.271.16.9573. [DOI] [PubMed] [Google Scholar]
  8. Fukuda K., Morioka H., Imajou S., Ikeda S., Ohtsuka E., Tsurimoto T. Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen. J Biol Chem. 1995 Sep 22;270(38):22527–22534. doi: 10.1074/jbc.270.38.22527. [DOI] [PubMed] [Google Scholar]
  9. Gary R., Ludwig D. L., Cornelius H. L., MacInnes M. A., Park M. S. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem. 1997 Sep 26;272(39):24522–24529. doi: 10.1074/jbc.272.39.24522. [DOI] [PubMed] [Google Scholar]
  10. Gatti M., Goldberg M. L. Mutations affecting cell division in Drosophila. Methods Cell Biol. 1991;35:543–586. doi: 10.1016/s0091-679x(08)60587-7. [DOI] [PubMed] [Google Scholar]
  11. Gu L., Hong Y., McCulloch S., Watanabe H., Li G. M. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 1998 Mar 1;26(5):1173–1178. doi: 10.1093/nar/26.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gulbis J. M., Kelman Z., Hurwitz J., O'Donnell M., Kuriyan J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell. 1996 Oct 18;87(2):297–306. doi: 10.1016/s0092-8674(00)81347-1. [DOI] [PubMed] [Google Scholar]
  13. Henderson D. S., Banga S. S., Grigliatti T. A., Boyd J. B. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J. 1994 Mar 15;13(6):1450–1459. doi: 10.1002/j.1460-2075.1994.tb06399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henderson D. S., Glover D. M. Chromosome fragmentation resulting from an inability to repair transposase-induced DNA double-strand breaks in PCNA mutants of Drosophila. Mutagenesis. 1998 Jan;13(1):57–60. doi: 10.1093/mutage/13.1.57. [DOI] [PubMed] [Google Scholar]
  15. Henderson D. S. Use of P element transposons to study DNA double-strand break repair in Drosophila melanogaster. Methods Mol Biol. 1999;113:417–424. doi: 10.1385/1-59259-675-4:417. [DOI] [PubMed] [Google Scholar]
  16. Holmes A. M., Haber J. E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell. 1999 Feb 5;96(3):415–424. doi: 10.1016/s0092-8674(00)80554-1. [DOI] [PubMed] [Google Scholar]
  17. Johnson R. E., Kovvali G. K., Guzder S. N., Amin N. S., Holm C., Habraken Y., Sung P., Prakash L., Prakash S. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem. 1996 Nov 8;271(45):27987–27990. doi: 10.1074/jbc.271.45.27987. [DOI] [PubMed] [Google Scholar]
  18. Jónsson Z. O., Hindges R., Hübscher U. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 1998 Apr 15;17(8):2412–2425. doi: 10.1093/emboj/17.8.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jónsson Z. O., Podust V. N., Podust L. M., Hübscher U. Tyrosine 114 is essential for the trimeric structure and the functional activities of human proliferating cell nuclear antigen. EMBO J. 1995 Nov 15;14(22):5745–5751. doi: 10.1002/j.1460-2075.1995.tb00261.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kelman Z. PCNA: structure, functions and interactions. Oncogene. 1997 Feb 13;14(6):629–640. doi: 10.1038/sj.onc.1200886. [DOI] [PubMed] [Google Scholar]
  21. Klungland A., Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997 Jun 2;16(11):3341–3348. doi: 10.1093/emboj/16.11.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krishna T. S., Kong X. P., Gary S., Burgers P. M., Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell. 1994 Dec 30;79(7):1233–1243. doi: 10.1016/0092-8674(94)90014-0. [DOI] [PubMed] [Google Scholar]
  23. Matsumoto Y., Kim K., Bogenhagen D. F. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol Cell Biol. 1994 Sep;14(9):6187–6197. doi: 10.1128/mcb.14.9.6187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McAlear M. A., Howell E. A., Espenshade K. K., Holm C. Proliferating cell nuclear antigen (pol30) mutations suppress cdc44 mutations and identify potential regions of interaction between the two encoded proteins. Mol Cell Biol. 1994 Jul;14(7):4390–4397. doi: 10.1128/mcb.14.7.4390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Montecucco A., Rossi R., Levin D. S., Gary R., Park M. S., Motycka T. A., Ciarrocchi G., Villa A., Biamonti G., Tomkinson A. E. DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. EMBO J. 1998 Jul 1;17(13):3786–3795. doi: 10.1093/emboj/17.13.3786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mossi R., Jónsson Z. O., Allen B. L., Hardin S. H., Hübscher U. Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen. J Biol Chem. 1997 Jan 17;272(3):1769–1776. doi: 10.1074/jbc.272.3.1769. [DOI] [PubMed] [Google Scholar]
  27. Mével-Ninio M., Terracol R., Salles C., Vincent A., Payre F. ovo, a Drosophila gene required for ovarian development, is specifically expressed in the germline and shares most of its coding sequences with shavenbaby, a gene involved in embryo patterning. Mech Dev. 1995 Jan;49(1-2):83–95. doi: 10.1016/0925-4773(94)00305-7. [DOI] [PubMed] [Google Scholar]
  28. Nichols A. F., Sancar A. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res. 1992 Jul 11;20(13):2441–2446. doi: 10.1093/nar/20.10.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oku T., Ikeda S., Sasaki H., Fukuda K., Morioka H., Ohtsuka E., Yoshikawa H., Tsurimoto T. Functional sites of human PCNA which interact with p21 (Cip1/Waf1), DNA polymerase delta and replication factor C. Genes Cells. 1998 Jun;3(6):357–369. doi: 10.1046/j.1365-2443.1998.00199.x. [DOI] [PubMed] [Google Scholar]
  30. Perrimon N., Engstrom L., Mahowald A. P. The effects of zygotic lethal mutations on female germ-line functions in Drosophila. Dev Biol. 1984 Oct;105(2):404–414. doi: 10.1016/0012-1606(84)90297-5. [DOI] [PubMed] [Google Scholar]
  31. Pirrotta V. Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression. Trends Genet. 1997 Aug;13(8):314–318. doi: 10.1016/s0168-9525(97)01178-5. [DOI] [PubMed] [Google Scholar]
  32. Rawls J. M., Fristrom J. W. A complex genetic locus that controls of the first three steps of pyrimidine biosynthesis in Drosophila. Nature. 1975 Jun 26;255(5511):738–740. doi: 10.1038/255738a0. [DOI] [PubMed] [Google Scholar]
  33. Roiha H., Rubin G. M., O'Hare K. P element insertions and rearrangements at the singed locus of Drosophila melanogaster. Genetics. 1988 May;119(1):75–83. doi: 10.1093/genetics/119.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roos G., Jiang Y., Landberg G., Nielsen N. H., Zhang P., Lee M. Y. Determination of the epitope of an inhibitory antibody to proliferating cell nuclear antigen. Exp Cell Res. 1996 Jul 10;226(1):208–213. doi: 10.1006/excr.1996.0220. [DOI] [PubMed] [Google Scholar]
  35. Sandler L., Lindsley D. L., Nicoletti B., Trippa G. Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics. 1968 Nov;60(3):525–558. doi: 10.1093/genetics/60.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schüpbach T. Autosomal mutations that interfere with sex determination in somatic cells of Drosophila have no direct effect on the germline. Dev Biol. 1982 Jan;89(1):117–127. doi: 10.1016/0012-1606(82)90300-1. [DOI] [PubMed] [Google Scholar]
  37. Schüpbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 1991 Dec;129(4):1119–1136. doi: 10.1093/genetics/129.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shivji K. K., Kenny M. K., Wood R. D. Proliferating cell nuclear antigen is required for DNA excision repair. Cell. 1992 Apr 17;69(2):367–374. doi: 10.1016/0092-8674(92)90416-a. [DOI] [PubMed] [Google Scholar]
  39. Sullivan W., Fogarty P., Theurkauf W. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development. 1993 Aug;118(4):1245–1254. doi: 10.1242/dev.118.4.1245. [DOI] [PubMed] [Google Scholar]
  40. Torres-Ramos C. A., Yoder B. L., Burgers P. M., Prakash S., Prakash L. Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9676–9681. doi: 10.1073/pnas.93.18.9676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Umar A., Buermeyer A. B., Simon J. A., Thomas D. C., Clark A. B., Liskay R. M., Kunkel T. A. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell. 1996 Oct 4;87(1):65–73. doi: 10.1016/s0092-8674(00)81323-9. [DOI] [PubMed] [Google Scholar]
  42. Warbrick E., Lane D. P., Glover D. M., Cox L. S. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr Biol. 1995 Mar 1;5(3):275–282. doi: 10.1016/s0960-9822(95)00058-3. [DOI] [PubMed] [Google Scholar]
  43. Warbrick E., Lane D. P., Glover D. M., Cox L. S. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene. 1997 May 15;14(19):2313–2321. doi: 10.1038/sj.onc.1201072. [DOI] [PubMed] [Google Scholar]
  44. Weinstein A. The Theory of Multiple-Strand Crossing over. Genetics. 1936 May;21(3):155–199. doi: 10.1093/genetics/21.3.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamaguchi M., Nishida Y., Moriuchi T., Hirose F., Hui C. C., Suzuki Y., Matsukage A. Drosophila proliferating cell nuclear antigen (cyclin) gene: structure, expression during development, and specific binding of homeodomain proteins to its 5'-flanking region. Mol Cell Biol. 1990 Mar;10(3):872–879. doi: 10.1128/mcb.10.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yamamoto Y., Girard F., Bello B., Affolter M., Gehring W. J. The cramped gene of Drosophila is a member of the Polycomb-group, and interacts with mus209, the gene encoding Proliferating Cell Nuclear Antigen. Development. 1997 Sep;124(17):3385–3394. doi: 10.1242/dev.124.17.3385. [DOI] [PubMed] [Google Scholar]
  47. Yarger R. J., King R. C. The phenogenetics of a temperature sensitive, autosomal dominant, female sterile gene in Drosophila melanogaster. Dev Biol. 1971 Feb;24(2):166–177. doi: 10.1016/0012-1606(71)90093-5. [DOI] [PubMed] [Google Scholar]
  48. Zhang P., Sun Y., Hsu H., Zhang L., Zhang Y., Lee M. Y. The interdomain connector loop of human PCNA is involved in a direct interaction with human polymerase delta. J Biol Chem. 1998 Jan 9;273(2):713–719. doi: 10.1074/jbc.273.2.713. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES