Abstract
We showed recently that a screen for mutant CDC28 with improved binding to a defective Cln2p G1 cyclin yielded a spectrum of mutations similar to those yielded by a screen for intragenic suppressors of the requirement for activation loop phosphorylation (T169E suppressors). Recombination among these mutations yielded CDC28 mutants that bypassed the G1 cyclin requirement. Here we analyze further the interrelationship between T169E suppression, interaction with defective cyclin, and G1 cyclin bypass. DNA shuffling of mutations from the various screens and recombination onto a T169E-encoding 3' end yielded CDC28 mutants with strong T169E suppression. Some of the strongest T169E suppressors could suppress the defective Cln2p G1 cyclin even while retaining T169E. The strong T169E suppressors did not exhibit bypass of the G1 cyclin requirement but did so when T169E was reverted to T. These results suggested that for these mutants, activation loop phosphorylation and cyclin binding might be alternative means of activation rather than independent requirements for activation (as with wild type). These results suggest mechanistic overlap between the conformational shift induced by cyclin binding and that induced by activation loop phosphorylation. This conclusion was supported by analysis of suppressors of a mutation in the Cdk phosphothreonine-binding pocket created by cyclin binding.
Full Text
The Full Text of this article is available as a PDF (597.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown N. R., Noble M. E., Lawrie A. M., Morris M. C., Tunnah P., Divita G., Johnson L. N., Endicott J. A. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem. 1999 Mar 26;274(13):8746–8756. doi: 10.1074/jbc.274.13.8746. [DOI] [PubMed] [Google Scholar]
- Canagarajah B. J., Khokhlatchev A., Cobb M. H., Goldsmith E. J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997 Sep 5;90(5):859–869. doi: 10.1016/s0092-8674(00)80351-7. [DOI] [PubMed] [Google Scholar]
- Cross F. R., Levine K. Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dependent kinase. Mol Cell Biol. 1998 May;18(5):2923–2931. doi: 10.1128/mcb.18.5.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross F. R., Yuste-Rojas M., Gray S., Jacobson M. D. Specialization and targeting of B-type cyclins. Mol Cell. 1999 Jul;4(1):11–19. doi: 10.1016/s1097-2765(00)80183-5. [DOI] [PubMed] [Google Scholar]
- Espinoza F. H., Farrell A., Erdjument-Bromage H., Tempst P., Morgan D. O. A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science. 1996 Sep 20;273(5282):1714–1717. doi: 10.1126/science.273.5282.1714. [DOI] [PubMed] [Google Scholar]
- Espinoza F. H., Farrell A., Nourse J. L., Chamberlin H. M., Gileadi O., Morgan D. O. Cak1 is required for Kin28 phosphorylation and activation in vivo. Mol Cell Biol. 1998 Nov;18(11):6365–6373. doi: 10.1128/mcb.18.11.6365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. P., Jin P., Chamberlin H. M., Morgan D. O. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell. 1995 Oct 6;83(1):47–57. doi: 10.1016/0092-8674(95)90233-3. [DOI] [PubMed] [Google Scholar]
- Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
- Kaldis P., Sutton A., Solomon M. J. The Cdk-activating kinase (CAK) from budding yeast. Cell. 1996 Aug 23;86(4):553–564. doi: 10.1016/s0092-8674(00)80129-4. [DOI] [PubMed] [Google Scholar]
- Kimmelman J., Kaldis P., Hengartner C. J., Laff G. M., Koh S. S., Young R. A., Solomon M. J. Activating phosphorylation of the Kin28p subunit of yeast TFIIH by Cak1p. Mol Cell Biol. 1999 Jul;19(7):4774–4787. doi: 10.1128/mcb.19.7.4774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine K., Huang K., Cross F. R. Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol Cell Biol. 1996 Dec;16(12):6794–6803. doi: 10.1128/mcb.16.12.6794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine K., Oehlen L. J., Cross F. R. Isolation and characterization of new alleles of the cyclin-dependent kinase gene CDC28 with cyclin-specific functional and biochemical defects. Mol Cell Biol. 1998 Jan;18(1):290–302. doi: 10.1128/mcb.18.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinez A. M., Afshar M., Martin F., Cavadore J. C., Labbé J. C., Dorée M. Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J. 1997 Jan 15;16(2):343–354. doi: 10.1093/emboj/16.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oehlen L. J., Cross F. R. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev. 1994 May 1;8(9):1058–1070. doi: 10.1101/gad.8.9.1058. [DOI] [PubMed] [Google Scholar]
- Pavletich N. P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol. 1999 Apr 16;287(5):821–828. doi: 10.1006/jmbi.1999.2640. [DOI] [PubMed] [Google Scholar]
- Russo A. A., Jeffrey P. D., Pavletich N. P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol. 1996 Aug;3(8):696–700. doi: 10.1038/nsb0896-696. [DOI] [PubMed] [Google Scholar]
- Schulman B. A., Lindstrom D. L., Harlow E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10453–10458. doi: 10.1073/pnas.95.18.10453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
- Thuret J. Y., Valay J. G., Faye G., Mann C. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell. 1996 Aug 23;86(4):565–576. doi: 10.1016/s0092-8674(00)80130-0. [DOI] [PubMed] [Google Scholar]