Skip to main content
Genetics logoLink to Genetics
. 2000 Apr;154(4):1577–1586. doi: 10.1093/genetics/154.4.1577

The Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response.

A F Hofmann 1, S D Harris 1
PMCID: PMC1461047  PMID: 10747054

Abstract

In Aspergillus nidulans, uvsB and uvsD belong to the same epistasis group of DNA repair mutants. Recent observations suggest that these genes are likely to control cell cycle checkpoint responses to DNA damage and incomplete replication. Consistent with this notion, we show here that UVSB is a member of the conserved family of ATM-related kinases. Phenotypic characterization of uvsB mutants shows that they possess defects in additional aspects of the DNA damage response besides checkpoint control, including inhibition of septum formation, regulation of gene expression, and induced mutagenesis. The musN227 mutation partially suppresses the poor growth and DNA damage sensitivity of uvsB mutants. Although musN227 partially suppresses several uvsB defects, it does not restore checkpoint function to uvsB mutants. Notably, the failure of uvsB mutants to restrain septum formation in the presence of DNA damage is suppressed by the musN227 mutation. We propose that UVSB functions as the central regulator of the A. nidulans DNA damage response, whereas MUSN promotes recovery by modulating a subset of the response.

Full Text

The Full Text of this article is available as a PDF (144.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboussekhra A., Vialard J. E., Morrison D. E., de la Torre-Ruiz M. A., Cernáková L., Fabre F., Lowndes N. F. A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription. EMBO J. 1996 Aug 1;15(15):3912–3922. [PMC free article] [PubMed] [Google Scholar]
  2. Banin S., Moyal L., Shieh S., Taya Y., Anderson C. W., Chessa L., Smorodinsky N. I., Prives C., Reiss Y., Shiloh Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998 Sep 11;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. [DOI] [PubMed] [Google Scholar]
  3. Bennett C. B., Rainbow A. J. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts. Mutagenesis. 1988 Sep;3(5):389–395. doi: 10.1093/mutage/3.5.389. [DOI] [PubMed] [Google Scholar]
  4. Bentley N. J., Holtzman D. A., Flaggs G., Keegan K. S., DeMaggio A., Ford J. C., Hoekstra M., Carr A. M. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 1996 Dec 2;15(23):6641–6651. [PMC free article] [PubMed] [Google Scholar]
  5. Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown A. L., Lee C. H., Schwarz J. K., Mitiku N., Piwnica-Worms H., Chung J. H. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3745–3750. doi: 10.1073/pnas.96.7.3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bunz F., Dutriaux A., Lengauer C., Waldman T., Zhou S., Brown J. P., Sedivy J. M., Kinzler K. W., Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998 Nov 20;282(5393):1497–1501. doi: 10.1126/science.282.5393.1497. [DOI] [PubMed] [Google Scholar]
  8. Canman C. E., Lim D. S., Cimprich K. A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M. B., Siliciano J. D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998 Sep 11;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677. [DOI] [PubMed] [Google Scholar]
  9. Chae S. K., Kafer E. uvsI mutants defective in UV mutagenesis define a fourth epistatic group of uvs genes in Aspergillus. Curr Genet. 1993 Jul-Aug;24(1-2):67–74. doi: 10.1007/BF00324667. [DOI] [PubMed] [Google Scholar]
  10. Cliby W. A., Roberts C. J., Cimprich K. A., Stringer C. M., Lamb J. R., Schreiber S. L., Friend S. H. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 1998 Jan 2;17(1):159–169. doi: 10.1093/emboj/17.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dobinson K. F., Harris R. E., Hamer J. E. Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant Microbe Interact. 1993 Jan-Feb;6(1):114–126. doi: 10.1094/mpmi-6-114. [DOI] [PubMed] [Google Scholar]
  12. Gems D., Johnstone I. L., Clutterbuck A. J. An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene. 1991 Feb 1;98(1):61–67. doi: 10.1016/0378-1119(91)90104-j. [DOI] [PubMed] [Google Scholar]
  13. Gentner N. E., Werner M. M., Hannan M. A., Nasim A. Contribution of a caffeine-sensitive recombinational repair pathway to survival and mutagenesis in UV-irradiated Schizosaccharomyces pombe. Mol Gen Genet. 1978 Nov 16;167(1):43–49. doi: 10.1007/BF00270320. [DOI] [PubMed] [Google Scholar]
  14. Han K. Y., Chae S. K., Han D. M. The uvsI gene of Aspergillus nidulans required for UV-mutagenesis encodes a homolog to REV3, a subunit of the DNA polymerase zeta of yeast involved in translesion DNA synthesis. FEMS Microbiol Lett. 1998 Jul 1;164(1):13–19. doi: 10.1111/j.1574-6968.1998.tb13061.x. [DOI] [PubMed] [Google Scholar]
  15. Harris P., Kersey P. J., McInerny C. J., Fantes P. A. Cell cycle, DNA damage and heat shock regulate suc22+ expression in fission yeast. Mol Gen Genet. 1996 Sep 13;252(3):284–291. doi: 10.1007/BF02173774. [DOI] [PubMed] [Google Scholar]
  16. Harris S. D., Hamer J. E. sepB: an Aspergillus nidulans gene involved in chromosome segregation and the initiation of cytokinesis. EMBO J. 1995 Nov 1;14(21):5244–5257. doi: 10.1002/j.1460-2075.1995.tb00209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harris S. D., Kraus P. R. Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics. 1998 Mar;148(3):1055–1067. doi: 10.1093/genetics/148.3.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harris S. D., Morrell J. L., Hamer J. E. Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics. 1994 Feb;136(2):517–532. doi: 10.1093/genetics/136.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hermeking H., Lengauer C., Polyak K., He T. C., Zhang L., Thiagalingam S., Kinzler K. W., Vogelstein B. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997 Dec;1(1):3–11. doi: 10.1016/s1097-2765(00)80002-7. [DOI] [PubMed] [Google Scholar]
  20. Hilgers G., Abrahams P. J., Chen Y. Q., Schouten R., Cornelis J. J., Lowe J. E., van der Eb A. J., Rommelaere J. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells. Mutagenesis. 1989 Jul;4(4):271–276. doi: 10.1093/mutage/4.4.271. [DOI] [PubMed] [Google Scholar]
  21. Jeggo P. A., Carr A. M., Lehmann A. R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 1998 Aug;14(8):312–316. doi: 10.1016/s0168-9525(98)01511-x. [DOI] [PubMed] [Google Scholar]
  22. Kafer E., Chae S. K. Phenotypic and epistatic grouping of hypo- and hyper-rec mus mutants in Aspergillus. Curr Genet. 1994 Mar;25(3):223–232. doi: 10.1007/BF00357166. [DOI] [PubMed] [Google Scholar]
  23. Kafer E., May G. The uvsF gene region in Aspergillus nidulans codes for a protein with homology to DNA replication factor C. Gene. 1997 Jun 3;191(2):155–159. doi: 10.1016/s0378-1119(97)00052-8. [DOI] [PubMed] [Google Scholar]
  24. Kiser G. L., Weinert T. A. Distinct roles of yeast MEC and RAD checkpoint genes in transcriptional induction after DNA damage and implications for function. Mol Biol Cell. 1996 May;7(5):703–718. doi: 10.1091/mbc.7.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Käfer E., Mayor O. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants. Mutat Res. 1986 Jul;161(2):119–134. doi: 10.1016/0027-5107(86)90003-5. [DOI] [PubMed] [Google Scholar]
  26. Käfer E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet. 1977;19:33–131. doi: 10.1016/s0065-2660(08)60245-x. [DOI] [PubMed] [Google Scholar]
  27. Martinho R. G., Lindsay H. D., Flaggs G., DeMaggio A. J., Hoekstra M. F., Carr A. M., Bentley N. J. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 1998 Dec 15;17(24):7239–7249. doi: 10.1093/emboj/17.24.7239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matsuoka S., Huang M., Elledge S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998 Dec 4;282(5395):1893–1897. doi: 10.1126/science.282.5395.1893. [DOI] [PubMed] [Google Scholar]
  29. O'Connell M. J., Osmani A. H., Morris N. R., Osmani S. A. An extra copy of nimEcyclinB elevates pre-MPF levels and partially suppresses mutation of nimTcdc25 in Aspergillus nidulans. EMBO J. 1992 Jun;11(6):2139–2149. doi: 10.1002/j.1460-2075.1992.tb05273.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Paulovich A. G., Hartwell L. H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell. 1995 Sep 8;82(5):841–847. doi: 10.1016/0092-8674(95)90481-6. [DOI] [PubMed] [Google Scholar]
  31. Rotman G., Shiloh Y. ATM: from gene to function. Hum Mol Genet. 1998;7(10):1555–1563. doi: 10.1093/hmg/7.10.1555. [DOI] [PubMed] [Google Scholar]
  32. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  33. Sidorova J. M., Breeden L. L. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev. 1997 Nov 15;11(22):3032–3045. doi: 10.1101/gad.11.22.3032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Siede W., Friedberg A. S., Dianova I., Friedberg E. C. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics. 1994 Oct;138(2):271–281. doi: 10.1093/genetics/138.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ye X. S., Fincher R. R., Tang A., O'Donnell K., Osmani S. A. Two S-phase checkpoint systems, one involving the function of both BIME and Tyr15 phosphorylation of p34cdc2, inhibit NIMA and prevent premature mitosis. EMBO J. 1996 Jul 15;15(14):3599–3610. [PMC free article] [PubMed] [Google Scholar]
  36. Ye X. S., Fincher R. R., Tang A., Osmani S. A. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans. EMBO J. 1997 Jan 2;16(1):182–192. doi: 10.1093/emboj/16.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yoon J. H., Lee B. J., Kang H. S. The Aspergillus uvsH gene encodes a product homologous to yeast RAD18 and Neurospora UVS-2. Mol Gen Genet. 1995 Jul 28;248(2):174–181. doi: 10.1007/BF02190798. [DOI] [PubMed] [Google Scholar]
  38. Zakian V. A. ATM-related genes: what do they tell us about functions of the human gene? Cell. 1995 Sep 8;82(5):685–687. doi: 10.1016/0092-8674(95)90463-8. [DOI] [PubMed] [Google Scholar]
  39. van Heemst D., Swart K., Holub E. F., van Dijk R., Offenberg H. H., Goosen T., van den Broek H. W., Heyting C. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51. Mol Gen Genet. 1997 May;254(6):654–664. doi: 10.1007/s004380050463. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES