Abstract
Tol2 is a transposable element of the terminal-inverted-repeat class, residing in the genome of the medaka fish Oryzias latipes. The genus Oryzias contains more than 10 species for which phylogenetic relationships have previously been estimated. To infer the history of Tol2 in this genus we performed genomic Southern blots and PCR analyses of 10 of the species. It was revealed that Tol2 occurs in 2 of the 10 species (O. curvinotus and O. latipes) and that the length and the restriction map structure of Tol2 are identical in the two cases. Further, sequencing analysis revealed an extremely low level of divergence compared with that in a nuclear gene. These results suggest recent incorporation of Tol2 into one or both of the two species, implying horizontal transfer of Tol2 from one species to the other or into them both from a common source.
Full Text
The Full Text of this article is available as a PDF (325.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker B., Schell J., Lörz H., Fedoroff N. Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4844–4848. doi: 10.1073/pnas.83.13.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bigot Y., Augé-Gouillou C., Periquet G. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-Mariner transposon family. Gene. 1996 Oct 3;174(2):265–271. doi: 10.1016/0378-1119(96)00092-3. [DOI] [PubMed] [Google Scholar]
- Calvi B. R., Hong T. J., Findley S. D., Gelbart W. M. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell. 1991 Aug 9;66(3):465–471. doi: 10.1016/0092-8674(81)90010-6. [DOI] [PubMed] [Google Scholar]
- Capy P., Anxolabéhère D., Langin T. The strange phylogenies of transposable elements: are horizontal transfers the only explantation? Trends Genet. 1994 Jan;10(1):7–12. doi: 10.1016/0168-9525(94)90012-4. [DOI] [PubMed] [Google Scholar]
- Capy P., Koga A., David J. R., Hartl D. L. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics. 1992 Mar;130(3):499–506. doi: 10.1093/genetics/130.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coates C. J., Johnson K. N., Perkins H. D., Howells A. J., O'Brochta D. A., Atkinson P. W. The hermit transposable element of the Australian sheep blowfly, Lucilia cuprina, belongs to the hAT family of transposable elements. Genetica. 1996 Jan;97(1):23–31. doi: 10.1007/BF00132577. [DOI] [PubMed] [Google Scholar]
- Daniels S. B., Peterson K. R., Strausbaugh L. D., Kidwell M. G., Chovnick A. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics. 1990 Feb;124(2):339–355. doi: 10.1093/genetics/124.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVault J. D., Narang S. K. Transposable elements in lepidoptera: hobo-like transposons in Heliothis virescens and Helicoverpa zea. Biochem Biophys Res Commun. 1994 Aug 30;203(1):169–175. doi: 10.1006/bbrc.1994.2164. [DOI] [PubMed] [Google Scholar]
- Fadool J. M., Hartl D. L., Dowling J. E. Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5182–5186. doi: 10.1073/pnas.95.9.5182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedoroff N., Wessler S., Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell. 1983 Nov;35(1):235–242. doi: 10.1016/0092-8674(83)90226-x. [DOI] [PubMed] [Google Scholar]
- Garcia-Fernàndez J., Marfany G., Baguñ J., Saló E. Infiltration of mariner elements. Nature. 1993 Jul 8;364(6433):109–110. doi: 10.1038/364109a0. [DOI] [PubMed] [Google Scholar]
- Gardiner K. Human genome organization. Curr Opin Genet Dev. 1995 Jun;5(3):315–322. doi: 10.1016/0959-437x(95)80045-x. [DOI] [PubMed] [Google Scholar]
- Garza D., Medhora M., Koga A., Hartl D. L. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics. 1991 Jun;128(2):303–310. doi: 10.1093/genetics/128.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gueiros-Filho F. J., Beverley S. M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science. 1997 Jun 13;276(5319):1716–1719. doi: 10.1126/science.276.5319.1716. [DOI] [PubMed] [Google Scholar]
- Handler A. M., Gomez S. P. The hobo transposable element has transposase-dependent and -independent excision activity in drosophilid species. Mol Gen Genet. 1995 May 20;247(4):399–408. doi: 10.1007/BF00293140. [DOI] [PubMed] [Google Scholar]
- Hartings H., Spilmont C., Lazzaroni N., Rossi V., Salamini F., Thompson R. D., Motto M. Molecular analysis of the Bg-rbg transposable element system of Zea mays L. Mol Gen Genet. 1991 May;227(1):91–96. doi: 10.1007/BF00260712. [DOI] [PubMed] [Google Scholar]
- Inagaki H., Bessho Y., Koga A., Hori H. Expression of the tyrosinase-encoding gene in a colorless melanophore mutant of the medaka fish, Oryzias latipes. Gene. 1994 Dec 15;150(2):319–324. doi: 10.1016/0378-1119(94)90445-6. [DOI] [PubMed] [Google Scholar]
- Izsvák Z., Ivics Z., Shimoda N., Mohn D., Okamoto H., Hackett P. B. Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol. 1999 Jan;48(1):13–21. doi: 10.1007/pl00006440. [DOI] [PubMed] [Google Scholar]
- Kawakami K., Koga A., Hori H., Shima A. Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene. 1998 Dec 28;225(1-2):17–22. doi: 10.1016/s0378-1119(98)00537-x. [DOI] [PubMed] [Google Scholar]
- Kawakami K., Shima A. Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene. 1999 Nov 15;240(1):239–244. doi: 10.1016/s0378-1119(99)00444-8. [DOI] [PubMed] [Google Scholar]
- Kempken F., Kück U. restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol Cell Biol. 1996 Nov;16(11):6563–6572. doi: 10.1128/mcb.16.11.6563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidwell M. G. Horizontal transfer. Curr Opin Genet Dev. 1992 Dec;2(6):868–873. doi: 10.1016/s0959-437x(05)80109-1. [DOI] [PubMed] [Google Scholar]
- Koga A., Hori H. Homogeneity in the structure of the medaka fish transposable element Tol2. Genet Res. 1999 Feb;73(1):7–14. doi: 10.1017/s0016672398003620. [DOI] [PubMed] [Google Scholar]
- Koga A., Inagaki H., Bessho Y., Hori H. Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol Gen Genet. 1995 Dec 10;249(4):400–405. doi: 10.1007/BF00287101. [DOI] [PubMed] [Google Scholar]
- Koga A., Suzuki M., Maruyama Y., Tsutsumi M., Hori H. Amino acid sequence of a putative transposase protein of the medaka fish transposable element Tol2 deduced from mRNA nucleotide sequences. FEBS Lett. 1999 Nov 19;461(3):295–298. doi: 10.1016/s0014-5793(99)01479-9. [DOI] [PubMed] [Google Scholar]
- Lampe D. J., Churchill M. E., Robertson H. M. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 1996 Oct 1;15(19):5470–5479. [PMC free article] [PubMed] [Google Scholar]
- Lawrence J. G., Ochman H., Hartl D. L. The evolution of insertion sequences within enteric bacteria. Genetics. 1992 May;131(1):9–20. doi: 10.1093/genetics/131.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohe A. R., Moriyama E. N., Lidholm D. A., Hartl D. L. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol. 1995 Jan;12(1):62–72. doi: 10.1093/oxfordjournals.molbev.a040191. [DOI] [PubMed] [Google Scholar]
- Lozovskaya E. R., Nurminsky D. I., Hartl D. L., Sullivan D. T. Germline transformation of Drosophila virilis mediated by the transposable element hobo. Genetics. 1996 Jan;142(1):173–177. doi: 10.1093/genetics/142.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama K., Hartl D. L. Evolution of the transposable element mariner in Drosophila species. Genetics. 1991 Jun;128(2):319–329. doi: 10.1093/genetics/128.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGinnis W., Shermoen A. W., Beckendorf S. K. A transposable element inserted just 5' to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell. 1983 Aug;34(1):75–84. doi: 10.1016/0092-8674(83)90137-x. [DOI] [PubMed] [Google Scholar]
- Postlethwait J. H., Johnson S. L., Midson C. N., Talbot W. S., Gates M., Ballinger E. W., Africa D., Andrews R., Carl T., Eisen J. S. A genetic linkage map for the zebrafish. Science. 1994 Apr 29;264(5159):699–703. doi: 10.1126/science.8171321. [DOI] [PubMed] [Google Scholar]
- Robertson H. M., Lampe D. J. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol. 1995 Sep;12(5):850–862. doi: 10.1093/oxfordjournals.molbev.a040262. [DOI] [PubMed] [Google Scholar]
- Streck R. D., Macgaffey J. E., Beckendorf S. K. The structure of hobo transposable elements and their insertion sites. EMBO J. 1986 Dec 20;5(13):3615–3623. doi: 10.1002/j.1460-2075.1986.tb04690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsay Y. F., Frank M. J., Page T., Dean C., Crawford N. M. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science. 1993 Apr 16;260(5106):342–344. doi: 10.1126/science.8385803. [DOI] [PubMed] [Google Scholar]
- Vos J. C., De Baere I., Plasterk R. H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 1996 Mar 15;10(6):755–761. doi: 10.1101/gad.10.6.755. [DOI] [PubMed] [Google Scholar]
- Warren W. D., Atkinson P. W., O'Brochta D. A. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res. 1994 Oct;64(2):87–97. doi: 10.1017/s0016672300032699. [DOI] [PubMed] [Google Scholar]