Skip to main content
Genetics logoLink to Genetics
. 2000 May;155(1):283–289. doi: 10.1093/genetics/155.1.283

Heritability of the maternal meiotic drive system linked to Om and high-resolution mapping of the Responder locus in mouse.

F Pardo-Manuel De Villena 1, E de La Casa-Esperón 1, J W Williams 1, J M Malette 1, M Rosa 1, C Sapienza 1
PMCID: PMC1461056  PMID: 10790402

Abstract

Matings between (C57BL/6 x DDK)F(1) females and C57BL/6 males result in a significant excess of offspring inheriting maternal DDK alleles in the central region of mouse chromosome 11 due to meiotic drive at the second meiotic division. We have shown previously that the locus subject to selection is in the vicinity of D11Mit66, a marker closely linked to the Om locus that controls the preimplantation embryo-lethal phenotype known as the "DDK syndrome." We have also shown that observation of meiotic drive in this system depends upon the genotype of the sire. Here we show that females that are heterozygous at Om retain the meiotic drive phenotype and define a 0.32-cM candidate interval for the Responder locus in this drive system. In addition, analysis of the inheritance of alleles at Om among the offspring of F(1) intercrosses indicates that the effect of the sire is determined by the sperm genotype at Om or a locus linked to Om.

Full Text

The Full Text of this article is available as a PDF (103.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agulnik S. I., Agulnik A. I., Ruvinsky A. O. Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genet Res. 1990 Apr;55(2):97–100. doi: 10.1017/s0016672300025325. [DOI] [PubMed] [Google Scholar]
  2. Agulnik S. I., Sabantsev I. D., Orlova G. V., Ruvinsky A. O. Meiotic drive on aberrant chromosome 1 in the mouse is determined by a linked distorter. Genet Res. 1993 Apr;61(2):91–96. doi: 10.1017/s0016672300031189. [DOI] [PubMed] [Google Scholar]
  3. Agulnik S. I., Sabantsev I. D., Ruvinsky A. O. Effect of sperm genotype on chromatid segregation in female mice heterozygous for aberrant chromosome 1. Genet Res. 1993 Apr;61(2):97–100. doi: 10.1017/s0016672300031190. [DOI] [PubMed] [Google Scholar]
  4. Aitman T. J., Hearne C. M., McAleer M. A., Todd J. A. Mononucleotide repeats are an abundant source of length variants in mouse genomic DNA. Mamm Genome. 1991;1(4):206–210. doi: 10.1007/BF00352326. [DOI] [PubMed] [Google Scholar]
  5. Babinet C., Richoux V., Guénet J. L., Renard J. P. The DDK inbred strain as a model for the study of interactions between parental genomes and egg cytoplasm in mouse preimplantation development. Dev Suppl. 1990:81–87. [PubMed] [Google Scholar]
  6. Baldacci P. A., Cohen-Tannoudji M., Kress C., Pournin S., Babinet C. A high-resolution map around the locus Om on mouse Chromosome 11. Mamm Genome. 1996 Feb;7(2):114–116. doi: 10.1007/s003359900030. [DOI] [PubMed] [Google Scholar]
  7. Baldacci P. A., Richoux V., Renard J. P., Guénet J. L., Babinet C. The locus Om, responsible for the DDK syndrome, maps close to Sigje on mouse chromosome 11. Mamm Genome. 1992;2(2):100–105. doi: 10.1007/BF00353857. [DOI] [PubMed] [Google Scholar]
  8. Bridges C. B. Non-Disjunction as Proof of the Chromosome Theory of Heredity (Concluded). Genetics. 1916 Mar;1(2):107–163. doi: 10.1093/genetics/1.2.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danoff T. M., Lalley P. A., Chang Y. S., Heeger P. S., Neilson E. G. Cloning, genomic organization, and chromosomal localization of the Scya5 gene encoding the murine chemokine RANTES. J Immunol. 1994 Feb 1;152(3):1182–1189. [PubMed] [Google Scholar]
  10. Dawe R. K., Cande W. Z. Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8512–8517. doi: 10.1073/pnas.93.16.8512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dietrich W. F., Miller J. C., Steen R. G., Merchant M., Damron D., Nahf R., Gross A., Joyce D. C., Wessel M., Dredge R. D. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nat Genet. 1994 Jun;7(2 Spec No):220–245. doi: 10.1038/ng0694supp-220. [DOI] [PubMed] [Google Scholar]
  12. Evans K., Fryer A., Inglehearn C., Duvall-Young J., Whittaker J. L., Gregory C. Y., Butler R., Ebenezer N., Hunt D. M., Bhattacharya S. Genetic linkage of cone-rod retinal dystrophy to chromosome 19q and evidence for segregation distortion. Nat Genet. 1994 Feb;6(2):210–213. doi: 10.1038/ng0294-210. [DOI] [PubMed] [Google Scholar]
  13. Hassold T., Abruzzo M., Adkins K., Griffin D., Merrill M., Millie E., Saker D., Shen J., Zaragoza M. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen. 1996;28(3):167–175. doi: 10.1002/(SICI)1098-2280(1996)28:3<167::AID-EM2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  14. Koehler K. E., Boulton C. L., Collins H. E., French R. L., Herman K. C., Lacefield S. M., Madden L. D., Schuetz C. D., Hawley R. S. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nat Genet. 1996 Dec;14(4):406–414. doi: 10.1038/ng1296-406. [DOI] [PubMed] [Google Scholar]
  15. Lyttle T. W. Cheaters sometimes prosper: distortion of mendelian segregation by meiotic drive. Trends Genet. 1993 Jun;9(6):205–210. doi: 10.1016/0168-9525(93)90120-7. [DOI] [PubMed] [Google Scholar]
  16. Mann J. R. DDK egg-foreign sperm incompatibility in mice is not between the pronuclei. J Reprod Fertil. 1986 Mar;76(2):779–781. doi: 10.1530/jrf.0.0760779. [DOI] [PubMed] [Google Scholar]
  17. Naumova A. K., Leppert M., Barker D. F., Morgan K., Sapienza C. Parental origin-dependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet. 1998 Jun;62(6):1493–1499. doi: 10.1086/301860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Naumova A. K., Leppert M., Barker D. F., Morgan K., Sapienza C. Parental origin-dependent, male offspring-specific transmission-ratio distortion at loci on the human X chromosome. Am J Hum Genet. 1998 Jun;62(6):1493–1499. doi: 10.1086/301860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pardo-Manual de Villena F., Slamka C., Fonseca M., Naumova A. K., Paquette J., Pannunzio P., Smith M., Verner A., Morgan K., Sapienza C. Transmission-ratio distortion through F1 females at chromosome 11 loci linked to Om in the mouse DDK syndrome. Genetics. 1996 Apr;142(4):1299–1304. doi: 10.1093/genetics/142.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pardo-Manuel de Villena F., Naumova A. K., Verner A. E., Jin W. H., Sapienza C. Confirmation of maternal transmission ratio distortion at Om and direct evidence that the maternal and paternal "DDK syndrome" genes are linked. Mamm Genome. 1997 Sep;8(9):642–646. doi: 10.1007/s003359900529. [DOI] [PubMed] [Google Scholar]
  21. Pardo-Manuel de Villena F., de la Casa-Esperon E., Briscoe T. L., Malette J. M., Sapienza C. Male-offspring-specific, haplotype-dependent, nonrandom cosegregation of alleles at loci on two mouse chromosomes. Genetics. 2000 Jan;154(1):351–356. doi: 10.1093/genetics/154.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pardo-Manuel de Villena F., de la Casa-Esperon E., Briscoe T. L., Sapienza C. A genetic test to determine the origin of maternal transmission ratio distortion. Meiotic drive at the mouse Om locus. Genetics. 2000 Jan;154(1):333–342. doi: 10.1093/genetics/154.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pardo-Manuel de Villena F., de la Casa-Esperón E., Verner A., Morgan K., Sapienza C. The maternal DDK syndrome phenotype is determined by modifier genes that are not linked to Om. Mamm Genome. 1999 May;10(5):492–497. doi: 10.1007/s003359901029. [DOI] [PubMed] [Google Scholar]
  24. Renard J. P., Babinet C. Identification of a paternal developmental effect on the cytoplasm of one-cell-stage mouse embryos. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6883–6886. doi: 10.1073/pnas.83.18.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rhoades M. M., Dempsey E. The Effect of Abnormal Chromosome 10 on Preferential Segregation and Crossing over in Maize. Genetics. 1966 May;53(5):989–1020. doi: 10.1093/genetics/53.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sapienza C., Paquette J., Pannunzio P., Albrechtson S., Morgan K. The polar-lethal Ovum mutant gene maps to the distal portion of mouse chromosome 11. Genetics. 1992 Sep;132(1):241–246. doi: 10.1093/genetics/132.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Siracusa L. D., Alvord W. G., Bickmore W. A., Jenkins N. A., Copeland N. G. Interspecific backcross mice show sex-specific differences in allelic inheritance. Genetics. 1991 Aug;128(4):813–821. doi: 10.1093/genetics/128.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wakasugi N. A genetically determined incompatibility system between spermatozoa and eggs leading to embryonic death in mice. J Reprod Fertil. 1974 Nov;41(1):85–96. doi: 10.1530/jrf.0.0410085. [DOI] [PubMed] [Google Scholar]
  29. Wakasugi N. Studies on fertility of DDK mice: reciprocal crosses between DDK and C57BL/6J strains and experimental transplantation of the ovary. J Reprod Fertil. 1973 May;33(2):283–291. doi: 10.1530/jrf.0.0330283. [DOI] [PubMed] [Google Scholar]
  30. Wakasugi N., Tomita T., Kondo K. Differences of fertility in reciprocal crosses between inbred strains of mice. DDK, KK and NC. J Reprod Fertil. 1967 Feb;13(1):41–50. doi: 10.1530/jrf.0.0130041. [DOI] [PubMed] [Google Scholar]
  31. de la Casa-Esperon E., Pardo-Manuel de Villena F., Verner A. E., Briscoe T. L., Malette J. M., Rosa M., Jin W. H., Sapienza C. Sex-of-offspring-specific transmission ratio distortion on mouse chromosome X. Genetics. 2000 Jan;154(1):343–350. doi: 10.1093/genetics/154.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES