Skip to main content
Genetics logoLink to Genetics
. 2000 May;155(1):291–300. doi: 10.1093/genetics/155.1.291

Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus.

J H Hallsson 1, J Favor 1, C Hodgkinson 1, T Glaser 1, M L Lamoreux 1, R Magnúsdóttir 1, G J Gunnarsson 1, H O Sweet 1, N G Copeland 1, N A Jenkins 1, E Steingrímsson 1
PMCID: PMC1461060  PMID: 10790403

Abstract

Mouse microphthalmia transcription factor (Mitf) mutations affect the development of four cell types: melanocytes, mast cells, osteoclasts, and pigmented epithelial cells of the eye. The mutations are phenotypically diverse and can be arranged in an allelic series. In humans, MITF mutations cause Waardenburg syndrome type 2A (WS2A) and Tietz syndrome, autosomal dominant disorders resulting in deafness and hypopigmentation. Mitf mice thus represent an important model system for the study of human disease. Here we report the complete exon/intron structure of the mouse Mitf gene and show it to be similar to the human gene. We also found that the mouse gene is transcriptionally complex and is capable of generating at least 13 different Mitf isoforms. Some of these isoforms are missing important functional domains of the protein, suggesting that they might play an inhibitory role in Mitf function and signal transduction. In addition, we determined the molecular basis for six microphthalmia mutations. Two of the mutations are reported for the first time here (Mitf(mi-enu198) and Mitf(mi-x39)), while the others (Mitf(mi-ws), Mitf(mi-bws), Mitf(mi-ew), and Mitf(mi-di)) have been described but the molecular basis for the mutation not determined. When analyzed in terms of the genomic and transcriptional data presented here, it is apparent that these mutations result from RNA processing or transcriptional defects. Interestingly, three of the mutations (Mitf(mi-x39), Mitf(mi-bws), and Mitf(mi-ws)) produce proteins that are missing important functional domains of the protein identified in in vitro studies, further confirming a biological role for these domains in the whole animal.

Full Text

The Full Text of this article is available as a PDF (213.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amae S., Fuse N., Yasumoto K., Sato S., Yajima I., Yamamoto H., Udono T., Durlu Y. K., Tamai M., Takahashi K. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem Biophys Res Commun. 1998 Jun 29;247(3):710–715. doi: 10.1006/bbrc.1998.8838. [DOI] [PubMed] [Google Scholar]
  2. Amiel J., Watkin P. M., Tassabehji M., Read A. P., Winter R. M. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol. 1998 Jan;7(1):17–20. [PubMed] [Google Scholar]
  3. Atchley W. R., Fitch W. M. A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5172–5176. doi: 10.1073/pnas.94.10.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benezra R., Davis R. L., Lockshon D., Turner D. L., Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. doi: 10.1016/0092-8674(90)90214-y. [DOI] [PubMed] [Google Scholar]
  5. Bentley N. J., Eisen T., Goding C. R. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol. 1994 Dec;14(12):7996–8006. doi: 10.1128/mcb.14.12.7996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bousset K., Henriksson M., Lüscher-Firzlaff J. M., Litchfield D. W., Lüscher B. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene. 1993 Dec;8(12):3211–3220. [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Del Gatto F., Gesnel M. C., Breathnach R. The exon sequence TAGG can inhibit splicing. Nucleic Acids Res. 1996 Jun 1;24(11):2017–2021. doi: 10.1093/nar/24.11.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferré-D'Amaré A. R., Pognonec P., Roeder R. G., Burley S. K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 1994 Jan 1;13(1):180–189. doi: 10.1002/j.1460-2075.1994.tb06247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferré-D'Amaré A. R., Prendergast G. C., Ziff E. B., Burley S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature. 1993 May 6;363(6424):38–45. doi: 10.1038/363038a0. [DOI] [PubMed] [Google Scholar]
  11. Hemesath T. J., Price E. R., Takemoto C., Badalian T., Fisher D. E. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature. 1998 Jan 15;391(6664):298–301. doi: 10.1038/34681. [DOI] [PubMed] [Google Scholar]
  12. Hemesath T. J., Steingrímsson E., McGill G., Hansen M. J., Vaught J., Hodgkinson C. A., Arnheiter H., Copeland N. G., Jenkins N. A., Fisher D. E. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994 Nov 15;8(22):2770–2780. doi: 10.1101/gad.8.22.2770. [DOI] [PubMed] [Google Scholar]
  13. Henrion A. A., Vaulont S., Raymondjean M., Kahn A. Mouse USF1 gene cloning: comparative organization within the c-myc gene family. Mamm Genome. 1996 Nov;7(11):803–809. doi: 10.1007/s003359900241. [DOI] [PubMed] [Google Scholar]
  14. Hodgkinson C. A., Moore K. J., Nakayama A., Steingrímsson E., Copeland N. G., Jenkins N. A., Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993 Jul 30;74(2):395–404. doi: 10.1016/0092-8674(93)90429-t. [DOI] [PubMed] [Google Scholar]
  15. Hughes M. J., Lingrel J. B., Krakowsky J. M., Anderson K. P. A helix-loop-helix transcription factor-like gene is located at the mi locus. J Biol Chem. 1993 Oct 5;268(28):20687–20690. [PubMed] [Google Scholar]
  16. Jenkins N. A., Copeland N. G., Taylor B. A., Lee B. K. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J Virol. 1982 Jul;43(1):26–36. doi: 10.1128/jvi.43.1.26-36.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaye F., Battey J., Nau M., Brooks B., Seifter E., De Greve J., Birrer M., Sausville E., Minna J. Structure and expression of the human L-myc gene reveal a complex pattern of alternative mRNA processing. Mol Cell Biol. 1988 Jan;8(1):186–195. doi: 10.1128/mcb.8.1.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maslen C., Babcock D., Raghunath M., Steinmann B. A rare branch-point mutation is associated with missplicing of fibrillin-2 in a large family with congenital contractural arachnodactyly. Am J Hum Genet. 1997 Jun;60(6):1389–1398. doi: 10.1086/515472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Read A. P., Newton V. E. Waardenburg syndrome. J Med Genet. 1997 Aug;34(8):656–665. doi: 10.1136/jmg.34.8.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roman C., Cohn L., Calame K. A dominant negative form of transcription activator mTFE3 created by differential splicing. Science. 1991 Oct 4;254(5028):94–97. doi: 10.1126/science.1840705. [DOI] [PubMed] [Google Scholar]
  21. Steingrímsson E., Favor J., Ferré-D'Amaré A. F., Copeland N. G., Jenkins N. A. Mitfmi-enu122 is a missense mutation in the HLH dimerization domain. Mamm Genome. 1998 Mar;9(3):250–252. doi: 10.1007/s003359900736. [DOI] [PubMed] [Google Scholar]
  22. Steingrímsson E., Moore K. J., Lamoreux M. L., Ferré-D'Amaré A. R., Burley S. K., Zimring D. C., Skow L. C., Hodgkinson C. A., Arnheiter H., Copeland N. G. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet. 1994 Nov;8(3):256–263. doi: 10.1038/ng1194-256. [DOI] [PubMed] [Google Scholar]
  23. Steingrímsson E., Nii A., Fisher D. E., Ferré-D'Amaré A. R., McCormick R. J., Russell L. B., Burley S. K., Ward J. M., Jenkins N. A., Copeland N. G. The semidominant Mi(b) mutation identifies a role for the HLH domain in DNA binding in addition to its role in protein dimerization. EMBO J. 1996 Nov 15;15(22):6280–6289. [PMC free article] [PubMed] [Google Scholar]
  24. Takebayashi K., Chida K., Tsukamoto I., Morii E., Munakata H., Arnheiter H., Kuroki T., Kitamura Y., Nomura S. The recessive phenotype displayed by a dominant negative microphthalmia-associated transcription factor mutant is a result of impaired nucleation potential. Mol Cell Biol. 1996 Mar;16(3):1203–1211. doi: 10.1128/mcb.16.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tassabehji M., Newton V. E., Liu X. Z., Brady A., Donnai D., Krajewska-Walasek M., Murday V., Norman A., Obersztyn E., Reardon W. The mutational spectrum in Waardenburg syndrome. Hum Mol Genet. 1995 Nov;4(11):2131–2137. doi: 10.1093/hmg/4.11.2131. [DOI] [PubMed] [Google Scholar]
  26. Tassabehji M., Newton V. E., Read A. P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet. 1994 Nov;8(3):251–255. doi: 10.1038/ng1194-251. [DOI] [PubMed] [Google Scholar]
  27. Västrik I., Koskinen P. J., Alitalo R., Mäkelä T. P. Alternative mRNA forms and open reading frames of the max gene. Oncogene. 1993 Feb;8(2):503–507. [PubMed] [Google Scholar]
  28. West J. D., Fisher G., Loutit J. F., Marshall M. J., Nisbet N. W., Perry V. H. A new allele of microphthalmia induced in the mouse: microphthalmia--defective iris (midi). Genet Res. 1985 Dec;46(3):309–324. doi: 10.1017/s0016672300022801. [DOI] [PubMed] [Google Scholar]
  29. Yajima I., Sato S., Kimura T., Yasumoto K., Shibahara S., Goding C. R., Yamamoto H. An L1 element intronic insertion in the black-eyed white (Mitf[mi-bw]) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness. Hum Mol Genet. 1999 Aug;8(8):1431–1441. doi: 10.1093/hmg/8.8.1431. [DOI] [PubMed] [Google Scholar]
  30. Yasumoto K., Amae S., Udono T., Fuse N., Takeda K., Shibahara S. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. Pigment Cell Res. 1998 Dec;11(6):329–336. doi: 10.1111/j.1600-0749.1998.tb00491.x. [DOI] [PubMed] [Google Scholar]
  31. Yasumoto K., Shibahara S. Molecular cloning of cDNA encoding a human TFEC isoform, a newly identified transcriptional regulator. Biochim Biophys Acta. 1997 Jul 17;1353(1):23–31. doi: 10.1016/s0167-4781(97)00034-1. [DOI] [PubMed] [Google Scholar]
  32. Yasumoto K., Yokoyama K., Shibata K., Tomita Y., Shibahara S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol. 1994 Dec;14(12):8058–8070. doi: 10.1128/mcb.14.12.8058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zimring D. C., Lamoreux M. L., Millichamp N. J., Skow L. C. Microphthalmia cloudy-eye (mi(ce)): a new murine allele. J Hered. 1996 Jul-Aug;87(4):334–338. doi: 10.1093/oxfordjournals.jhered.a023009. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES