Skip to main content
Genetics logoLink to Genetics
. 2000 May;155(1):349–359. doi: 10.1093/genetics/155.1.349

Analysis of extrachromosomal Ac/Ds transposable elements.

V Gorbunova 1, A A Levy 1
PMCID: PMC1461075  PMID: 10790408

Abstract

The mechanism of transposition of the maize Ac/Ds elements is not well understood. The true transposition intermediates are not known and it has not been possible to distinguish between excision models involving 8-bp staggered cuts or 1-bp staggered cuts followed by hairpin formation. In this work, we have analyzed extrachromosomal excision products to gain insight into the excision mechanism. Plasmid rescue was used to demonstrate that Ds excision is associated with the formation of circular molecules. In addition, we present evidence for the formation of linear extrachromosomal species during Ds excision. Sequences found at the termini of circular and linear elements showed a broad range of nucleotide additions or deletions, suggesting that these species are not true intermediates. Additional nucleotides adjacent to the termini in extrachromosomal elements were compared to the sequence of the original donor site. This analysis showed that: (1) the first nucleotide adjacent to the transposon end was significantly more similar to the first nucleotide flanking the element in the donor site than to a random sequence and (2) the second and farther nucleotides did not resemble the donor site. The implications of these findings for excision models are discussed.

Full Text

The Full Text of this article is available as a PDF (161.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal A., Eastman Q. M., Schatz D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature. 1998 Aug 20;394(6695):744–751. doi: 10.1038/29457. [DOI] [PubMed] [Google Scholar]
  2. Bainton R. J., Kubo K. M., Feng J. N., Craig N. L. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell. 1993 Mar 26;72(6):931–943. doi: 10.1016/0092-8674(93)90581-a. [DOI] [PubMed] [Google Scholar]
  3. Bancroft I., Bhatt A. M., Sjodin C., Scofield S., Jones J. D., Dean C. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol Gen Genet. 1992 Jun;233(3):449–461. doi: 10.1007/BF00265443. [DOI] [PubMed] [Google Scholar]
  4. Baran G., Echt C., Bureau T., Wessler S. Molecular analysis of the maize wx-B3 allele indicates that precise excision of the transposable Ac element is rare. Genetics. 1992 Feb;130(2):377–384. doi: 10.1093/genetics/130.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beall E. L., Rio D. C. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev. 1997 Aug 15;11(16):2137–2151. doi: 10.1101/gad.11.16.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benjamin H. W., Kleckner N. Excision of Tn10 from the donor site during transposition occurs by flush double-strand cleavages at the transposon termini. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4648–4652. doi: 10.1073/pnas.89.10.4648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colot V., Haedens V., Rossignol J. L. Extensive, nonrandom diversity of excision footprints generated by Ds-like transposon Ascot-1 suggests new parallels with V(D)J recombination. Mol Cell Biol. 1998 Jul;18(7):4337–4346. doi: 10.1128/mcb.18.7.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dooner H. K., Belachew A. Transposition Pattern of the Maize Element Ac from the Bz-M2(ac) Allele. Genetics. 1989 Jun;122(2):447–457. doi: 10.1093/genetics/122.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dooner H. K., Keller J., Harper E., Ralston E. Variable Patterns of Transposition of the Maize Element Activator in Tobacco. Plant Cell. 1991 May;3(5):473–482. doi: 10.1105/tpc.3.5.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fedoroff N. V., Smith D. L. A versatile system for detecting transposition in Arabidopsis. Plant J. 1993 Feb;3(2):273–289. doi: 10.1111/j.1365-313x.1993.tb00178.x. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Finnegan E. J., Taylor B. H., Craig S., Dennis E. S. Transposable elements can be used to study cell lineages in transgenic plants. Plant Cell. 1989 Aug;1(8):757–764. doi: 10.1105/tpc.1.8.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gorbunova V., Levy A. A. Circularized Ac/Ds transposons: formation, structure and fate. Genetics. 1997 Apr;145(4):1161–1169. doi: 10.1093/genetics/145.4.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gorbunova V., Levy A. A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 1997 Nov 15;25(22):4650–4657. doi: 10.1093/nar/25.22.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gorbunova V, V, Levy AA. How plants make ends meet: DNA double-strand break repair. Trends Plant Sci. 1999 Jul;4(7):263–269. doi: 10.1016/s1360-1385(99)01430-2. [DOI] [PubMed] [Google Scholar]
  16. Greenblatt I. M. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, modulator, in maize. Genetics. 1984 Oct;108(2):471–485. doi: 10.1093/genetics/108.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hiom K., Melek M., Gellert M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell. 1998 Aug 21;94(4):463–470. doi: 10.1016/s0092-8674(00)81587-1. [DOI] [PubMed] [Google Scholar]
  18. Jones J. D., Carland F. M., Maliga P., Dooner H. K. Visual detection of transposition of the maize element activator (ac) in tobacco seedlings. Science. 1989 Apr 14;244(4901):204–207. doi: 10.1126/science.244.4901.204. [DOI] [PubMed] [Google Scholar]
  19. Jones J. D., Carland F., Lim E., Ralston E., Dooner H. K. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell. 1990 Aug;2(8):701–707. doi: 10.1105/tpc.2.8.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kennedy A. K., Guhathakurta A., Kleckner N., Haniford D. B. Tn10 transposition via a DNA hairpin intermediate. Cell. 1998 Oct 2;95(1):125–134. doi: 10.1016/s0092-8674(00)81788-2. [DOI] [PubMed] [Google Scholar]
  21. Rommens C. M., Rudenko G. N., Dijkwel P. P., van Haaren M. J., Ouwerkerk P. B., Blok K. M., Nijkamp H. J., Hille J. Characterization of the Ac/Ds behaviour in transgenic tomato plants using plasmid rescue. Plant Mol Biol. 1992 Oct;20(1):61–70. doi: 10.1007/BF00029149. [DOI] [PubMed] [Google Scholar]
  22. Roth D. B., Menetski J. P., Nakajima P. B., Bosma M. J., Gellert M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell. 1992 Sep 18;70(6):983–991. doi: 10.1016/0092-8674(92)90248-b. [DOI] [PubMed] [Google Scholar]
  23. Rubin E., Levy A. A. Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol. 1997 Nov;17(11):6294–6302. doi: 10.1128/mcb.17.11.6294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salomon S., Puchta H. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 1998 Oct 15;17(20):6086–6095. doi: 10.1093/emboj/17.20.6086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scott L., LaFoe D., Weil C. F. Adjacent sequences influence DNA repair accompanying transposon excision in maize. Genetics. 1996 Jan;142(1):237–246. doi: 10.1093/genetics/142.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van Luenen H. G., Colloms S. D., Plasterk R. H. The mechanism of transposition of Tc3 in C. elegans. Cell. 1994 Oct 21;79(2):293–301. doi: 10.1016/0092-8674(94)90198-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES