Skip to main content
Genetics logoLink to Genetics
. 2000 May;155(1):167–178. doi: 10.1093/genetics/155.1.167

Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins.

R R Snook 1, S Y Cleland 1, M F Wolfner 1, T L Karr 1
PMCID: PMC1461085  PMID: 10790392

Abstract

Infection in Drosophila simulans with the endocellular symbiont Wolbachia pipientis results in egg lethality caused by failure to properly initiate diploid development (cytoplasmic incompatibility, CI). The relationship between Wolbachia infection and reproductive factors influencing male fitness has not been well examined. Here we compare infected and uninfected strains of D. simulans for (1) sperm production, (2) male fertility, and (3) the transfer and processing of two accessory gland proteins, Acp26Aa or Acp36De. Infected males produced significantly fewer sperm cysts than uninfected males over the first 10 days of adult life, and infected males, under varied mating conditions, had lower fertility compared to uninfected males. This fertility effect was due to neither differences between infected and uninfected males in the transfer and subsequent processing of accessory gland proteins by females nor to the presence of Wolbachia in mature sperm. We found that heat shock, which is known to decrease CI expression, increases sperm production to a greater extent in infected compared to uninfected males, suggesting a possible link between sperm production and heat shock. Given these results, the roles Wolbachia and heat shock play in mediating male gamete production may be important parameters for understanding the dynamics of infection in natural populations.

Full Text

The Full Text of this article is available as a PDF (270.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguadé M. Different forces drive the evolution of the Acp26Aa and Acp26Ab accessory gland genes in the Drosophila melanogaster species complex. Genetics. 1998 Nov;150(3):1079–1089. doi: 10.1093/genetics/150.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aigaki T., Fleischmann I., Chen P. S., Kubli E. Ectopic expression of sex peptide alters reproductive behavior of female D. melanogaster. Neuron. 1991 Oct;7(4):557–563. doi: 10.1016/0896-6273(91)90368-a. [DOI] [PubMed] [Google Scholar]
  3. Bertram M. J., Neubaum D. M., Wolfner M. F. Localization of the Drosophila male accessory gland protein Acp36DE in the mated female suggests a role in sperm storage. Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):971–980. doi: 10.1016/s0965-1748(96)00064-1. [DOI] [PubMed] [Google Scholar]
  4. Bouchon D., Rigaud T., Juchault P. Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc Biol Sci. 1998 Jun 22;265(1401):1081–1090. doi: 10.1098/rspb.1998.0402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourtzis K., Nirgianaki A., Markakis G., Savakis C. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics. 1996 Nov;144(3):1063–1073. doi: 10.1093/genetics/144.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyle L., O'Neill S. L., Robertson H. M., Karr T. L. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science. 1993 Jun 18;260(5115):1796–1799. doi: 10.1126/science.8511587. [DOI] [PubMed] [Google Scholar]
  7. Callaini G., Dallai R., Riparbelli M. G. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci. 1997 Jan;110(Pt 2):271–280. doi: 10.1242/jcs.110.2.271. [DOI] [PubMed] [Google Scholar]
  8. Chen P. S., Stumm-Zollinger E., Aigaki T., Balmer J., Bienz M., Böhlen P. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell. 1988 Jul 29;54(3):291–298. doi: 10.1016/0092-8674(88)90192-4. [DOI] [PubMed] [Google Scholar]
  9. Clark A. G., Aguadé M., Prout T., Harshman L. G., Langley C. H. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics. 1995 Jan;139(1):189–201. doi: 10.1093/genetics/139.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
  11. Giordano R., O'Neill S. L., Robertson H. M. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics. 1995 Aug;140(4):1307–1317. doi: 10.1093/genetics/140.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glaser R. L., Wolfner M. F., Lis J. T. Spatial and temporal pattern of hsp26 expression during normal development. EMBO J. 1986 Apr;5(4):747–754. doi: 10.1002/j.1460-2075.1986.tb04277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glover D. M., Raff J., Karr T. L., O'Neill S. L., Lin H., Wolfner M. F. Parasites in Drosophila embryos. Nature. 1990 Nov 8;348(6297):117–117. doi: 10.1038/348117a0. [DOI] [PubMed] [Google Scholar]
  14. Habrová V., Takác M., Navrátil J., Mácha J., Cesková N., Jonák J. Association of rous sarcoma virus DNA with Xenopus laevis spermatozoa and its transfer to ova through fertilization. Mol Reprod Dev. 1996 Jul;44(3):332–342. doi: 10.1002/(SICI)1098-2795(199607)44:3<332::AID-MRD7>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  15. Heifetz Y., Lung O., Frongillo E. A., Jr, Wolfner M. F. The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr Biol. 2000 Jan 27;10(2):99–102. doi: 10.1016/s0960-9822(00)00288-8. [DOI] [PubMed] [Google Scholar]
  16. Hoffmann A. A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics. 1998 Jan;148(1):221–231. doi: 10.1093/genetics/148.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kalb J. M., DiBenedetto A. J., Wolfner M. F. Probing the function of Drosophila melanogaster accessory glands by directed cell ablation. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8093–8097. doi: 10.1073/pnas.90.17.8093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karr T. L. Paternal investment and intracellular sperm-egg interactions during and following fertilization in Drosophila. Curr Top Dev Biol. 1996;34:89–115. doi: 10.1016/s0070-2153(08)60709-7. [DOI] [PubMed] [Google Scholar]
  19. Karr T. L., Yang W., Feder M. E. Overcoming cytoplasmic incompatibility in Drosophila. Proc Biol Sci. 1998 Mar 7;265(1394):391–395. doi: 10.1098/rspb.1998.0307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kose H., Karr T. L. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech Dev. 1995 Jun;51(2-3):275–288. doi: 10.1016/0925-4773(95)00372-x. [DOI] [PubMed] [Google Scholar]
  21. LEFEVRE G., Jr, JONSSON U. B. Sperm transfer, storage, displacement, and utilization in Drosophila melanogaster. Genetics. 1962 Dec;47:1719–1736. doi: 10.1093/genetics/47.12.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lassy C. W., Karr T. L. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech Dev. 1996 Jun;57(1):47–58. doi: 10.1016/0925-4773(96)00527-8. [DOI] [PubMed] [Google Scholar]
  23. Monsma S. A., Harada H. A., Wolfner M. F. Synthesis of two Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Dev Biol. 1990 Dec;142(2):465–475. doi: 10.1016/0012-1606(90)90368-s. [DOI] [PubMed] [Google Scholar]
  24. Monsma S. A., Wolfner M. F. Structure and expression of a Drosophila male accessory gland gene whose product resembles a peptide pheromone precursor. Genes Dev. 1988 Sep;2(9):1063–1073. doi: 10.1101/gad.2.9.1063. [DOI] [PubMed] [Google Scholar]
  25. Neubaum D. M., Wolfner M. F. Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics. 1999 Oct;153(2):845–857. doi: 10.1093/genetics/153.2.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Neill S. L., Karr T. L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature. 1990 Nov 8;348(6297):178–180. doi: 10.1038/348178a0. [DOI] [PubMed] [Google Scholar]
  29. Park M., Wolfner M. F. Male and female cooperate in the prohormone-like processing of a Drosophila melanogaster seminal fluid protein. Dev Biol. 1995 Oct;171(2):694–702. doi: 10.1006/dbio.1995.1315. [DOI] [PubMed] [Google Scholar]
  30. Poinsot D., Bourtzis K., Markakis G., Savakis C., Merçot H. Wolbachia transfer from Drosophila melanogaster into D. simulans: Host effect and cytoplasmic incompatibility relationships. Genetics. 1998 Sep;150(1):227–237. doi: 10.1093/genetics/150.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rousset F., Bouchon D., Pintureau B., Juchault P., Solignac M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci. 1992 Nov 23;250(1328):91–98. doi: 10.1098/rspb.1992.0135. [DOI] [PubMed] [Google Scholar]
  32. Sinkins S. P., Braig H. R., O'Neill S. L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci. 1995 Sep 22;261(1362):325–330. doi: 10.1098/rspb.1995.0154. [DOI] [PubMed] [Google Scholar]
  33. Stouthamer R., Breeuwert J. A., Luck R. F., Werren J. H. Molecular identification of microorganisms associated with parthenogenesis. Nature. 1993 Jan 7;361(6407):66–68. doi: 10.1038/361066a0. [DOI] [PubMed] [Google Scholar]
  34. Tsaur S. C., Ting C. T., Wu C. I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol Biol Evol. 1998 Aug;15(8):1040–1046. doi: 10.1093/oxfordjournals.molbev.a026002. [DOI] [PubMed] [Google Scholar]
  35. Turelli M., Hoffmann A. A. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995 Aug;140(4):1319–1338. doi: 10.1093/genetics/140.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Turelli M., Hoffmann A. A., McKechnie S. W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics. 1992 Nov;132(3):713–723. doi: 10.1093/genetics/132.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Turelli M., Hoffmann A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature. 1991 Oct 3;353(6343):440–442. doi: 10.1038/353440a0. [DOI] [PubMed] [Google Scholar]
  38. Turelli M., Orr H. A. The dominance theory of Haldane's rule. Genetics. 1995 May;140(1):389–402. doi: 10.1093/genetics/140.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wade M. J., Stevens L. Microorganism mediated reproductive isolation in flour beetles (genus Tribolium). Science. 1985 Feb 1;227(4686):527–528. doi: 10.1126/science.3966160. [DOI] [PubMed] [Google Scholar]
  40. Werren J. H., Zhang W., Guo L. R. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci. 1995 Jul 22;261(1360):55–63. doi: 10.1098/rspb.1995.0117. [DOI] [PubMed] [Google Scholar]
  41. Yen J. H., Barr A. R. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol. 1973 Sep;22(2):242–250. doi: 10.1016/0022-2011(73)90141-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES