Skip to main content
Genetics logoLink to Genetics
. 2000 Jun;155(2):657–669. doi: 10.1093/genetics/155.2.657

Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina.

E Coppin 1, R Debuchy 1
PMCID: PMC1461101  PMID: 10835389

Abstract

In the heterothallic filamentous fungus Podospora anserina, four mating-type genes encoding transcriptional factors have been characterized: FPR1 in the mat+ sequence and FMR1, SMR1, and SMR2 in the alternative mat- sequence. Fertilization is controlled by FPR1 and FMR1. After fertilization, male and female nuclei, which have divided in the same cell, form mat+/mat- pairs during migration into the ascogenous hyphae. Previous data indicate that the formation of mat+/mat- pairs is controlled by FPR1, FMR1, and SMR2. SMR1 was postulated to be necessary for initial development of ascogenous hyphae. In this study, we investigated the transcriptional control of the mat genes by seeking mat transcripts during the vegetative and sexual phase and fusing their promoter to a reporter gene. The data indicate that FMR1 and FPR1 are expressed in both mycelia and perithecia, whereas SMR1 and SMR2 are transcribed in perithecia. Increased or induced vegetative expression of the four mat genes has no effect when the recombined gene is solely in the wild-type strain. However, the combination of resident FPR1 with deregulated SMR2 and overexpressed FMR1 in the same nucleus is lethal. This lethality is suppressed by the expression of SMR1, confirming that SMR1 operates downstream of the other mat genes.

Full Text

The Full Text of this article is available as a PDF (168.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaise S., Debuchy R., Picard M. What is a bona fide mating-type gene? Internuclear complementation of mat mutants in Podospora anserina. Mol Gen Genet. 1997 Sep;256(2):169–178. doi: 10.1007/pl00008611. [DOI] [PubMed] [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  3. Calmels T., Parriche M., Durand H., Tiraby G. High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet. 1991 Sep;20(4):309–314. doi: 10.1007/BF00318520. [DOI] [PubMed] [Google Scholar]
  4. Coppin-Raynal E., Picard M., Arnaise S. Transformation by integration in Podospora anserina. III. Replacement of a chromosome segment by a two-step process. Mol Gen Genet. 1989 Oct;219(1-2):270–276. doi: 10.1007/BF00261187. [DOI] [PubMed] [Google Scholar]
  5. Coppin E., Arnaise S., Contamine V., Picard M. Deletion of the mating-type sequences in Podospora anserina abolishes mating without affecting vegetative functions and sexual differentiation. Mol Gen Genet. 1993 Nov;241(3-4):409–414. doi: 10.1007/BF00284694. [DOI] [PubMed] [Google Scholar]
  6. Cross F., Hartwell L. H., Jackson C., Konopka J. B. Conjugation in Saccharomyces cerevisiae. Annu Rev Cell Biol. 1988;4:429–457. doi: 10.1146/annurev.cb.04.110188.002241. [DOI] [PubMed] [Google Scholar]
  7. Debuchy R., Arnaise S., Lecellier G. The mat- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol Gen Genet. 1993 Dec;241(5-6):667–673. doi: 10.1007/BF00279909. [DOI] [PubMed] [Google Scholar]
  8. Debuchy R., Coppin E. The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol Gen Genet. 1992 May;233(1-2):113–121. doi: 10.1007/BF00587568. [DOI] [PubMed] [Google Scholar]
  9. Debuchy R. Internuclear recognition: A possible connection between euascomycetes and homobasidiomycetes. Fungal Genet Biol. 1999 Jul-Aug;27(2-3):218–223. doi: 10.1006/fgbi.1999.1142. [DOI] [PubMed] [Google Scholar]
  10. Drocourt D., Calmels T., Reynes J. P., Baron M., Tiraby G. Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res. 1990 Jul 11;18(13):4009–4009. doi: 10.1093/nar/18.13.4009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferreira A. V., Saupe S., Glass N. L. Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. Mol Gen Genet. 1996 Apr 10;250(6):767–774. doi: 10.1007/BF02172989. [DOI] [PubMed] [Google Scholar]
  12. Freeman W. M., Walker S. J., Vrana K. E. Quantitative RT-PCR: pitfalls and potential. Biotechniques. 1999 Jan;26(1):112-22, 124-5. doi: 10.2144/99261rv01. [DOI] [PubMed] [Google Scholar]
  13. McCulloch R. K., Choong C. S., Hurley D. M. An evaluation of competitor type and size for use in the determination of mRNA by competitive PCR. PCR Methods Appl. 1995 Feb;4(4):219–226. doi: 10.1101/gr.4.4.219. [DOI] [PubMed] [Google Scholar]
  14. Miyajima I., Nakafuku M., Nakayama N., Brenner C., Miyajima A., Kaibuchi K., Arai K., Kaziro Y., Matsumoto K. GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell. 1987 Sep 25;50(7):1011–1019. doi: 10.1016/0092-8674(87)90167-x. [DOI] [PubMed] [Google Scholar]
  15. Picard M., Debuchy R., Coppin E. Cloning the mating types of the heterothallic fungus Podospora anserina: developmental features of haploid transformants carrying both mating types. Genetics. 1991 Jul;128(3):539–547. doi: 10.1093/genetics/128.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Punt P. J., Dingemanse M. A., Jacobs-Meijsing B. J., Pouwels P. H., van den Hondel C. A. Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Aspergillus nidulans. Gene. 1988 Sep 15;69(1):49–57. doi: 10.1016/0378-1119(88)90377-0. [DOI] [PubMed] [Google Scholar]
  17. Raju N. B., Perkins D. D. Diverse programs of ascus development in pseudohomothallic species of Neurospora, Gelasinospora, and Podospora. Dev Genet. 1994;15(1):104–118. doi: 10.1002/dvg.1020150111. [DOI] [PubMed] [Google Scholar]
  18. Ridder R., Osiewacz H. D. Sequence analysis of the gene coding for glyceraldehyde-3-phosphate dehydrogenase (gpd) of Podospora anserina: use of homologous regulatory sequences to improve transformation efficiency. Curr Genet. 1992 Mar;21(3):207–213. doi: 10.1007/BF00336843. [DOI] [PubMed] [Google Scholar]
  19. Thompson-Coffe C., Zickler D. How the cytoskeleton recognizes and sorts nuclei of opposite mating type during the sexual cycle in filamentous ascomycetes. Dev Biol. 1994 Sep;165(1):257–271. doi: 10.1006/dbio.1994.1251. [DOI] [PubMed] [Google Scholar]
  20. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  21. Zickler D., Arnaise S., Coppin E., Debuchy R., Picard M. Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics. 1995 Jun;140(2):493–503. doi: 10.1093/genetics/140.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES