Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Sep 1;24(17):3295–3301. doi: 10.1093/nar/24.17.3295

A revised secondary structure model for the 3'-end of hepatitis B virus pregenomic RNA.

A H Kidd 1, K Kidd-Ljunggren 1
PMCID: PMC146111  PMID: 8811080

Abstract

The polymerase encoded by human hepatitis B virus, which has reverse transcriptase and RNase H activity, binds to its pregenomic RNA template in a two-step process involving a terminal redundancy. Both first strand and second strand DNA synthesis involve primer translocation and second strand synthesis involves a template jump. Three parts of the genome, including the so-called core promoter, are known to show deletions in strains usually arising after long-standing HBV infection, but also in some patients treated with interferon. A computer-based study of RNA template folding in the core promoter region, accommodating well-known point mutations, has generated a model for the 3' DR1 primer binding site as being part of a superstructure encompassing an already well-established stem-loop. Depending on the identity of nucleotides 1762 and 1764, the DR1 region may assume two alternative secondary structures which stabilize it as a primer binding site to different extents. Remarkably, one of these structures includes a pronounced loop which coincides with at least 12 related deletions seen in HBV DNA from different patients. Thus according to the model, the 5'- and 3'-ends of pregenomic RNA, which share primary sequences but have separate functions, are not structural equivalents. An RNA superstructure near the 3'-end of all HBV transcripts could have far-reaching implications for the modulation of both genome replication and post-transcriptional processing.

Full Text

The Full Text of this article is available as a PDF (157.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arii M., Takada S., Koike K. Identification of three essential regions of hepatitis B virus X protein for trans-activation function. Oncogene. 1992 Mar;7(3):397–403. [PubMed] [Google Scholar]
  2. Barlet V., Zarski J. P., Thelu M. A., Bichard P., Seigneurin J. M. Different prevalence of precore mutants in five members of a hepatitis-B-virus-infected family: evidence for a precore variant type in an asymptomatic anti-HBs patient. J Hepatol. 1994 Nov;21(5):797–805. doi: 10.1016/s0168-8278(94)80242-4. [DOI] [PubMed] [Google Scholar]
  3. Bartenschlager R., Junker-Niepmann M., Schaller H. The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol. 1990 Nov;64(11):5324–5332. doi: 10.1128/jvi.64.11.5324-5332.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carman W. F., Jacyna M. R., Hadziyannis S., Karayiannis P., McGarvey M. J., Makris A., Thomas H. C. Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection. Lancet. 1989 Sep 9;2(8663):588–591. doi: 10.1016/s0140-6736(89)90713-7. [DOI] [PubMed] [Google Scholar]
  5. Chen I. H., Huang C. J., Ting L. P. Overlapping initiator and TATA box functions in the basal core promoter of hepatitis B virus. J Virol. 1995 Jun;69(6):3647–3657. doi: 10.1128/jvi.69.6.3647-3657.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feitelson M. A. Biology of hepatitis B virus variants. Lab Invest. 1994 Sep;71(3):324–349. [PubMed] [Google Scholar]
  7. Fiordalisi G., Ghiotto F., Castelnuovo F., Primi D., Cariani E. Analysis of the hepatitis B virus genome and immune response in HBsAg, anti-HBs positive chronic hepatitis. J Hepatol. 1994 Apr;20(4):487–493. doi: 10.1016/s0168-8278(05)80495-7. [DOI] [PubMed] [Google Scholar]
  8. Ganem D., Pollack J. R., Tavis J. Hepatitis B virus reverse transcriptase and its many roles in hepadnaviral genomic replication. Infect Agents Dis. 1994 Apr-Jun;3(2-3):85–93. [PubMed] [Google Scholar]
  9. Gerken G., Kremsdorf D., Capel F., Petit M. A., Dauguet C., Manns M. P., Meyer zum Büschenfelde K. H., Brechot C. Hepatitis B defective virus with rearrangements in the preS gene during chronic HBV infection. Virology. 1991 Aug;183(2):555–565. doi: 10.1016/0042-6822(91)90984-j. [DOI] [PubMed] [Google Scholar]
  10. Gotoh K., Mima S., Uchida T., Shikata T., Yoshizawa K., Irie M., Mizui M. Nucleotide sequence of hepatitis B virus isolated from subjects without serum anti-hepatitis B core antibody. J Med Virol. 1995 Jul;46(3):201–206. doi: 10.1002/jmv.1890460306. [DOI] [PubMed] [Google Scholar]
  11. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  12. Hirsch R. C., Lavine J. E., Chang L. J., Varmus H. E., Ganem D. Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription. Nature. 1990 Apr 5;344(6266):552–555. doi: 10.1038/344552a0. [DOI] [PubMed] [Google Scholar]
  13. Horikita M., Itoh S., Yamamoto K., Shibayama T., Tsuda F., Okamoto H. Differences in the entire nucleotide sequence between hepatitis B virus genomes from carriers positive for antibody to hepatitis B e antigen with and without active disease. J Med Virol. 1994 Sep;44(1):96–103. doi: 10.1002/jmv.1890440118. [DOI] [PubMed] [Google Scholar]
  14. Hu J., Seeger C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1060–1064. doi: 10.1073/pnas.93.3.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobs B. L., Langland J. O. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology. 1996 May 15;219(2):339–349. doi: 10.1006/viro.1996.0259. [DOI] [PubMed] [Google Scholar]
  16. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Junker-Niepmann M., Bartenschlager R., Schaller H. A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. EMBO J. 1990 Oct;9(10):3389–3396. doi: 10.1002/j.1460-2075.1990.tb07540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kidd-Ljunggren K., Oberg M., Kidd A. H. The hepatitis B virus X gene: analysis of functional domain variation and gene phylogeny using multiple sequences. J Gen Virol. 1995 Sep;76(Pt 9):2119–2130. doi: 10.1099/0022-1317-76-9-2119. [DOI] [PubMed] [Google Scholar]
  19. Knaus T., Nassal M. The encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function. Nucleic Acids Res. 1993 Aug 25;21(17):3967–3975. doi: 10.1093/nar/21.17.3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kretz K. A., Carson G. S., O'Brien J. S. Direct sequencing from low-melt agarose with Sequenase. Nucleic Acids Res. 1989 Jul 25;17(14):5864–5864. doi: 10.1093/nar/17.14.5864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laskus T., Rakela J., Persing D. H. The stem-loop structure of the cis-encapsidation signal is highly conserved in naturally occurring hepatitis B virus variants. Virology. 1994 May 1;200(2):809–812. doi: 10.1006/viro.1994.1247. [DOI] [PubMed] [Google Scholar]
  22. Laskus T., Rakela J., Tong M. J., Nowicki M. J., Mosley J. W., Persing D. H. Naturally occurring hepatitis B virus mutants with deletions in the core promoter region. J Hepatol. 1994 Jun;20(6):837–841. doi: 10.1016/s0168-8278(05)80158-8. [DOI] [PubMed] [Google Scholar]
  23. Li J. S., Tong S. P., Wen Y. M., Vitvitski L., Zhang Q., Trépo C. Hepatitis B virus genotype A rarely circulates as an HBe-minus mutant: possible contribution of a single nucleotide in the precore region. J Virol. 1993 Sep;67(9):5402–5410. doi: 10.1128/jvi.67.9.5402-5410.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ljunggren K., Kidd A. H. Enzymatic amplification and sequence analysis of precore/core DNA in HBsAg-positive patients. J Med Virol. 1991 Jul;34(3):179–183. doi: 10.1002/jmv.1890340309. [DOI] [PubMed] [Google Scholar]
  25. Lok A. S., Akarca U., Greene S. Mutations in the pre-core region of hepatitis B virus serve to enhance the stability of the secondary structure of the pre-genome encapsidation signal. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4077–4081. doi: 10.1073/pnas.91.9.4077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Melegari M., Bruno S., Wands J. R. Properties of hepatitis B virus pre-S1 deletion mutants. Virology. 1994 Mar;199(2):292–300. doi: 10.1006/viro.1994.1127. [DOI] [PubMed] [Google Scholar]
  27. Nakajima E., Minami M., Ochiya T., Kagawa K., Okanoue T. PreS1 deleted variants of hepatitis B virus in patients with chronic hepatitis. J Hepatol. 1994 Mar;20(3):329–335. doi: 10.1016/s0168-8278(94)80003-0. [DOI] [PubMed] [Google Scholar]
  28. Naumann H., Schaefer S., Yoshida C. F., Gaspar A. M., Repp R., Gerlich W. H. Identification of a new hepatitis B virus (HBV) genotype from Brazil that expresses HBV surface antigen subtype adw4. J Gen Virol. 1993 Aug;74(Pt 8):1627–1632. doi: 10.1099/0022-1317-74-8-1627. [DOI] [PubMed] [Google Scholar]
  29. Norder H., Couroucé A. M., Magnius L. O. Complete genomes, phylogenetic relatedness, and structural proteins of six strains of the hepatitis B virus, four of which represent two new genotypes. Virology. 1994 Feb;198(2):489–503. doi: 10.1006/viro.1994.1060. [DOI] [PubMed] [Google Scholar]
  30. Okamoto H., Tsuda F., Akahane Y., Sugai Y., Yoshiba M., Moriyama K., Tanaka T., Miyakawa Y., Mayumi M. Hepatitis B virus with mutations in the core promoter for an e antigen-negative phenotype in carriers with antibody to e antigen. J Virol. 1994 Dec;68(12):8102–8110. doi: 10.1128/jvi.68.12.8102-8110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Okamoto H., Tsuda F., Sakugawa H., Sastrosoewignjo R. I., Imai M., Miyakawa Y., Mayumi M. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol. 1988 Oct;69(Pt 10):2575–2583. doi: 10.1099/0022-1317-69-10-2575. [DOI] [PubMed] [Google Scholar]
  32. Pollack J. R., Ganem D. An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. J Virol. 1993 Jun;67(6):3254–3263. doi: 10.1128/jvi.67.6.3254-3263.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Repp R., Keller C., Borkhardt A., Csecke A., Schaefer S., Gerlich W. H., Lampert F. Detection of a hepatitis B virus variant with a truncated X gene and enhancer II. Arch Virol. 1992;125(1-4):299–304. doi: 10.1007/BF01309646. [DOI] [PubMed] [Google Scholar]
  34. Rieger A., Nassal M. Specific hepatitis B virus minus-strand DNA synthesis requires only the 5' encapsidation signal and the 3'-proximal direct repeat DR1. J Virol. 1996 Jan;70(1):585–589. doi: 10.1128/jvi.70.1.585-589.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Russnak R., Ganem D. Sequences 5' to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes Dev. 1990 May;4(5):764–776. doi: 10.1101/gad.4.5.764. [DOI] [PubMed] [Google Scholar]
  36. Takada S., Kido H., Fukutomi A., Mori T., Koike K. Interaction of hepatitis B virus X protein with a serine protease, tryptase TL2 as an inhibitor. Oncogene. 1994 Feb;9(2):341–348. [PubMed] [Google Scholar]
  37. Takada S., Koike K. Three sites of the hepatitis B virus X protein cooperatively interact with cellular proteins. Virology. 1994 Dec;205(2):503–510. doi: 10.1006/viro.1994.1671. [DOI] [PubMed] [Google Scholar]
  38. Tavis J. E., Ganem D. RNA sequences controlling the initiation and transfer of duck hepatitis B virus minus-strand DNA. J Virol. 1995 Jul;69(7):4283–4291. doi: 10.1128/jvi.69.7.4283-4291.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Uchida T., Gotoh K., Shikata T. Complete nucleotide sequences and the characteristics of two hepatitis B virus mutants causing serologically negative acute or chronic hepatitis B. J Med Virol. 1995 Mar;45(3):247–252. doi: 10.1002/jmv.1890450303. [DOI] [PubMed] [Google Scholar]
  40. Yuh C. H., Chang Y. L., Ting L. P. Transcriptional regulation of precore and pregenomic RNAs of hepatitis B virus. J Virol. 1992 Jul;66(7):4073–4084. doi: 10.1128/jvi.66.7.4073-4084.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES