Skip to main content
Genetics logoLink to Genetics
. 2000 Jun;155(2):803–812. doi: 10.1093/genetics/155.2.803

Physical mapping of male fertility and meiotic drive quantitative trait loci in the mouse t complex using chromosome deficiencies.

A Planchart 1, Y You 1, J C Schimenti 1
PMCID: PMC1461111  PMID: 10835401

Abstract

The t complex spans 20 cM of the proximal region of mouse chromosome 17. A variant form, the t haplotype (t), exists at significant frequencies in wild mouse populations and is characterized by the presence of inversions that suppress recombination with wild-type (+) chromosomes. Transmission ratio distortion and sterility are associated with t and affect males only. It is hypothesized that these phenomena are caused by trans-acting distorter/sterility factors that interact with a responder locus (Tcr(t)) and that the distorter and sterility factors are the same because homozygosity of the distorters causes male sterility. One factor, Tcd1, was previously shown to be amorphic using a chromosome deletion. To overcome limitations imposed by recombination suppression, we used a series of deletions within the t complex in trans to t chromosomes to characterize the Tcd1 region. We find that the distorter activity of Tcd1 is distinct from a linked sterility factor, originally called tcs1. YACs mapped with respect to deletion breakpoints localize tcs1 to a 1.1-Mb interval flanked by D17Aus9 and Tctex1. We present evidence for the existence of multiple proximal t complex regions that exhibit distorter activity. These studies demonstrate the utility of chromosome deletions for complex trait analysis.

Full Text

The Full Text of this article is available as a PDF (132.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardlie K. G. Putting the brake on drive: meiotic drive of t haplotypes in natural populations of mice. Trends Genet. 1998 May;14(5):189–193. doi: 10.1016/s0168-9525(98)01455-3. [DOI] [PubMed] [Google Scholar]
  2. Ardlie K. G., Silver L. M. Low frequency of mouse t haplotypes in wild populations is not explained by modifiers of meiotic drive. Genetics. 1996 Dec;144(4):1787–1797. doi: 10.1093/genetics/144.4.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett D., Alton A. K., Artzt K. Genetic analysis of transmission ratio distortion by t-haplotypes in the mouse. Genet Res. 1983 Feb;41(1):29–45. doi: 10.1017/s0016672300021042. [DOI] [PubMed] [Google Scholar]
  4. Bergstrom R. A., You Y., Erway L. C., Lyon M. F., Schimenti J. C. Deletion mapping of the head tilt (het) gene in mice: a vestibular mutation causing specific absence of otoliths. Genetics. 1998 Oct;150(2):815–822. doi: 10.1093/genetics/150.2.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bilinski P., Schimenti J., Gossler A. A new spontaneous deletion on chromosome 17 including brachyury. Mamm Genome. 1997 Dec;8(12):932–933. doi: 10.1007/s003359900614. [DOI] [PubMed] [Google Scholar]
  6. Drewes G., Ebneth A., Preuss U., Mandelkow E. M., Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997 Apr 18;89(2):297–308. doi: 10.1016/s0092-8674(00)80208-1. [DOI] [PubMed] [Google Scholar]
  7. Gummere G. R., McCormick P. J., Bennett D. The influence of genetic background and the homologous chromosome 17 on t-haplotype transmission ratio distortion in mice. Genetics. 1986 Sep;114(1):235–245. doi: 10.1093/genetics/114.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haldi M. L., Strickland C., Lim P., VanBerkel V., Chen X., Noya D., Korenberg J. R., Husain Z., Miller J., Lander E. S. A comprehensive large-insert yeast artificial chromosome library for physical mapping of the mouse genome. Mamm Genome. 1996 Oct;7(10):767–769. doi: 10.1007/s003359900228. [DOI] [PubMed] [Google Scholar]
  9. Harrison A., Olds-Clarke P., King S. M. Identification of the t complex-encoded cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. J Cell Biol. 1998 Mar 9;140(5):1137–1147. doi: 10.1083/jcb.140.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herrmann B. G., Barlow D. P., Lehrach H. A large inverted duplication allows homologous recombination between chromosomes heterozygous for the proximal t complex inversion. Cell. 1987 Mar 13;48(5):813–825. doi: 10.1016/0092-8674(87)90078-x. [DOI] [PubMed] [Google Scholar]
  11. Herrmann B. G., Koschorz B., Wertz K., McLaughlin K. J., Kispert A. A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature. 1999 Nov 11;402(6758):141–146. doi: 10.1038/45970. [DOI] [PubMed] [Google Scholar]
  12. Himmelbauer H., Silver L. M. High-resolution comparative mapping of mouse chromosome 17. Genomics. 1993 Jul;17(1):110–120. doi: 10.1006/geno.1993.1291. [DOI] [PubMed] [Google Scholar]
  13. Howard C. A., Gummere G. R., Lyon M. F., Bennett D., Artzt K. Genetic and molecular analysis of the proximal region of the mouse t-complex using new molecular probes and partial t-haplotypes. Genetics. 1990 Dec;126(4):1103–1114. doi: 10.1093/genetics/126.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inaba K., Kagami O., Ogawa K. Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility. Biochem Biophys Res Commun. 1999 Mar 5;256(1):177–183. doi: 10.1006/bbrc.1999.0309. [DOI] [PubMed] [Google Scholar]
  15. King S. M., Dillman J. F., 3rd, Benashski S. E., Lye R. J., Patel-King R. S., Pfister K. K. The mouse t-complex-encoded protein Tctex-1 is a light chain of brain cytoplasmic dynein. J Biol Chem. 1996 Dec 13;271(50):32281–32287. doi: 10.1074/jbc.271.50.32281. [DOI] [PubMed] [Google Scholar]
  16. Kuretake S., Maleszewski M., Tokumasu A., Fujimoto H., Yanagimachi R. Inadequate function of sterile tw5/tw32 spermatozoa overcome by intracytoplasmic sperm injection. Mol Reprod Dev. 1996 Jun;44(2):230–233. doi: 10.1002/(SICI)1098-2795(199606)44:2<230::AID-MRD12>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  17. Lyon M. F. Deletion of mouse t-complex distorter-1 produces an effect like that of the t-form of the distorter. Genet Res. 1992 Feb;59(1):27–33. doi: 10.1017/s0016672300030147. [DOI] [PubMed] [Google Scholar]
  18. Lyon M. F. Male sterility of the mouse t-complex is due to homozygosity of the distorter genes. Cell. 1986 Jan 31;44(2):357–363. doi: 10.1016/0092-8674(86)90770-1. [DOI] [PubMed] [Google Scholar]
  19. Lyon M. F., Schimenti J. C., Evans E. P. Narrowing the critical regions for mouse t complex transmission ratio distortion factors by use of deletions. Genetics. 2000 Jun;155(2):793–801. doi: 10.1093/genetics/155.2.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lyon M. F. Transmission ratio distortion in mouse t-haplotypes is due to multiple distorter genes acting on a responder locus. Cell. 1984 Jun;37(2):621–628. doi: 10.1016/0092-8674(84)90393-3. [DOI] [PubMed] [Google Scholar]
  21. Mazarakis N. D., Nelki D., Lyon M. F., Ruddy S., Evans E. P., Freemont P., Dudley K. Isolation and characterisation of a testis-expressed developmentally regulated gene from the distal inversion of the mouse t-complex. Development. 1991 Feb;111(2):561–571. doi: 10.1242/dev.111.2.561. [DOI] [PubMed] [Google Scholar]
  22. Morita T., Murata K., Sakaizumi M., Kubota H., Delarbre C., Gachelin G., Willison K., Matsushiro A. Mouse t haplotype-specific double insertion of B2 repetitive sequences in the Tcp-1 intron 7. Mamm Genome. 1993;4(1):58–59. doi: 10.1007/BF00364666. [DOI] [PubMed] [Google Scholar]
  23. O'Neill M. J., Artzt K. Identification of a germ-cell-specific transcriptional repressor in the promoter of Tctex-1. Development. 1995 Feb;121(2):561–568. doi: 10.1242/dev.121.2.561. [DOI] [PubMed] [Google Scholar]
  24. Ramírez-Solis R., Liu P., Bradley A. Chromosome engineering in mice. Nature. 1995 Dec 14;378(6558):720–724. doi: 10.1038/378720a0. [DOI] [PubMed] [Google Scholar]
  25. Samant S. A., Fossella J., Silver L. M., Pilder S. H. Mapping and cloning recombinant breakpoints demarcating the hybrid sterility 6-specific sperm tail assembly defect. Mamm Genome. 1999 Feb;10(2):88–94. doi: 10.1007/s003359900950. [DOI] [PubMed] [Google Scholar]
  26. Silver L. M. Gene dosage effects on transmission ratio distortion and fertility in mice that carry t haplotypes. Genet Res. 1989 Dec;54(3):221–225. doi: 10.1017/s0016672300028688. [DOI] [PubMed] [Google Scholar]
  27. Silver L. M. Mouse t haplotypes. Annu Rev Genet. 1985;19:179–208. doi: 10.1146/annurev.ge.19.120185.001143. [DOI] [PubMed] [Google Scholar]
  28. Silver L. M., Remis D. Five of the nine genetically defined regions of mouse t haplotypes are involved in transmission ratio distortion. Genet Res. 1987 Feb;49(1):51–56. doi: 10.1017/s0016672300026720. [DOI] [PubMed] [Google Scholar]
  29. You Y., Bergstrom R., Klemm M., Lederman B., Nelson H., Ticknor C., Jaenisch R., Schimenti J. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat Genet. 1997 Mar;15(3):285–288. doi: 10.1038/ng0397-285. [DOI] [PubMed] [Google Scholar]
  30. Zhao Y., Bjørbaek C., Weremowicz S., Morton C. C., Moller D. E. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol Cell Biol. 1995 Aug;15(8):4353–4363. doi: 10.1128/mcb.15.8.4353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES