Skip to main content
Genetics logoLink to Genetics
. 2000 Jun;155(2):813–831. doi: 10.1093/genetics/155.2.813

The effects of pollen and seed migration on nuclear-dicytoplasmic systems. I. Nonrandom associations and equilibrium structure with both maternal and paternal cytoplasmic inheritance.

M A Asmussen 1, M E Orive 1
PMCID: PMC1461116  PMID: 10835402

Abstract

We determine the nuclear-dicytoplasmic effects of unidirectional gene flow via pollen and seeds upon a mixed-mating plant population, focusing on nuclear-mitochondrial-chloroplast systems where mitochondria are inherited maternally and chloroplasts paternally, as in many conifers. After first delineating the general effects of admixture (via seeds or individuals) on the nonrandom associations in such systems, we derive the full dicytonuclear equilibrium structure, including when disequilibria may be indicators of gene flow. Substantial levels of permanent two- and three-locus disequilibria can be generated in adults by (i) nonzero disequilibria in the migrant pools or (ii) intermigrant admixture effects via different chloroplast frequencies in migrant pollen and seeds. Additionally, three-locus disequilibria can be generated by higher-order intermigrant effects such as different chloroplast frequencies in migrant pollen and seeds coupled with nuclear-mitochondrial disequilibria in migrant seeds, or different nuclear frequencies in migrant pollen and seeds coupled with mitochondrial-chloroplast disequilibria in migrant seeds. Further insight is provided by considering special cases with seed or pollen migration alone, complete random mating or selfing, or migrant pollen and seeds lacking disequilibria or intermigrant admixture effects. The results complete the theoretical foundation for a new method for estimating pollen and seed migration using joint cytonuclear or dicytonuclear data.

Full Text

The Full Text of this article is available as a PDF (283.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J., Asmussen M. A., Avise J. C. An epistatic mating system model can produce permanent cytonuclear disequilibria in a hybrid zone. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1893–1896. doi: 10.1073/pnas.85.6.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asmussen M. A., Arnold J., Avise J. C. Definition and properties of disequilibrium statistics for associations between nuclear and cytoplasmic genotypes. Genetics. 1987 Apr;115(4):755–768. doi: 10.1093/genetics/115.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asmussen M. A., Arnold J. The effects of admixture and population subdivision on cytonuclear disequilibria. Theor Popul Biol. 1991 Jun;39(3):273–300. doi: 10.1016/0040-5809(91)90024-a. [DOI] [PubMed] [Google Scholar]
  4. Asmussen M. A., Basten C. J. Constraints and normalized measures for cytonuclear disequilibria. Heredity (Edinb) 1996 Mar;76(Pt 3):207–214. doi: 10.1038/hdy.1996.33. [DOI] [PubMed] [Google Scholar]
  5. Asmussen M. A., Schnabel A. Comparative effects of pollen and seed migration on the cytonuclear structure of plant populations. I. Maternal cytoplasmic inheritance. Genetics. 1991 Jul;128(3):639–654. doi: 10.1093/genetics/128.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BENNETT J. H. On the theory of random mating. Ann Eugen. 1954 Mar;18(4):311–317. doi: 10.1111/j.1469-1809.1952.tb02522.x. [DOI] [PubMed] [Google Scholar]
  7. Babcock C. S., Asmussen M. A. Effects of differential selection in the sexes on cytonuclear dynamics. Life stages with sex differences. Genetics. 1998 Aug;149(4):2063–2077. doi: 10.1093/genetics/149.4.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Babcock C. S., Asmussen M. A. Effects of differential selection in the sexes on cytonuclear polymorphism and disequilibria. Genetics. 1996 Oct;144(2):839–853. doi: 10.1093/genetics/144.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Basten C. J., Asmussen M. A. The exact test for cytonuclear disequilibria. Genetics. 1997 Jul;146(3):1165–1171. doi: 10.1093/genetics/146.3.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodisman M. A., Asmussen M. A. Cytonuclear theory for haplodiploid species and X-linked genes. I. Hardy-Weinberg dynamics and continent-island, hybrid zone models. Genetics. 1997 Sep;147(1):321–338. doi: 10.1093/genetics/147.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nei M., Li W. H. Linkage disequilibrium in subdivided populations. Genetics. 1973 Sep;75(1):213–219. doi: 10.1093/genetics/75.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Orive M. E., Asmussen M. A. The effects of pollen and seed migration on nuclear-dicytoplasmic systems. II. A new method for estimating plant gene flow from joint nuclear-cytoplasmic data. Genetics. 2000 Jun;155(2):833–854. doi: 10.1093/genetics/155.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schnabel A., Asmussen M. A. Comparative effects of pollen and seed migration on the cytonuclear structure of plant populations. II. Paternal cytoplasmic inheritance. Genetics. 1992 Sep;132(1):253–267. doi: 10.1093/genetics/132.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schnabel A., Asmussen M. A. Definition and properties of disequilibria within nuclear-mitochondrial-chloroplast and other nuclear-dicytoplasmic systems. Genetics. 1989 Sep;123(1):199–215. doi: 10.1093/genetics/123.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wagner D. B., Furnier G. R., Saghai-Maroof M. A., Williams S. M., Dancik B. P., Allard R. W. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2097–2100. doi: 10.1073/pnas.84.7.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES