Abstract
The study of mutational frequency (Mf) and specificity in aging Big Blue lacI transgenic mice provides a unique opportunity to determine mutation rates (MR) in vivo in different tissues. We found that MR are not static, but rather, vary with the age or developmental stage of the tissue. Although Mf increase more rapidly early in life, MR are actually lower in younger animals than in older animals. For example, we estimate that the changes in Mf are 4.9x10(-8) and 1.1 x 10(-8) mutations/base pair/month in the livers of younger mice (<1. 5 months old) and older mice (> or =1.5 months old), respectively (a 4-fold decrease), and that the MR are 3.9 x 10(-9) and 1.3 x 10(-7) mutations/base pair/cell division, respectively ( approximately 30-fold increase). These data also permit an estimate of the MR of GC --> AT transitions occurring at 5'-CpG-3' (CpG) dinucleotide sequences. Subsequently, the contribution of these transitions to age-related demethylation of genomic DNA can be evaluated. Finally, to better understand the origin of observed Mf, we consider the contribution of various factors, including DNA damage and repair, by constructing a descriptive mutational model. We then apply this model to estimate the efficiency of repair of deaminated 5-methylcytosine nucleosides occurring at CpG dinucleotide sequences, as well as the influence of the Msh2(-/-) DNA repair defect on overall DNA repair efficiency in Big Blue mice. We conclude that even slight changes in DNA repair efficiency could lead to significant increases in mutation frequencies, potentially contributing significantly to human pathogenesis, including cancer.
Full Text
The Full Text of this article is available as a PDF (121.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrew S. E., Reitmair A. H., Fox J., Hsiao L., Francis A., McKinnon M., Mak T. W., Jirik F. R. Base transitions dominate the mutational spectrum of a transgenic reporter gene in MSH2 deficient mice. Oncogene. 1997 Jul 10;15(2):123–129. doi: 10.1038/sj.onc.1201180. [DOI] [PubMed] [Google Scholar]
- Bhattacharya S. K., Ramchandani S., Cervoni N., Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature. 1999 Feb 18;397(6720):579–583. doi: 10.1038/17533. [DOI] [PubMed] [Google Scholar]
- Bird A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980 Apr 11;8(7):1499–1504. doi: 10.1093/nar/8.7.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodsky W. Y., Uryvaeva I. V. Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol. 1977;50:275–332. doi: 10.1016/s0074-7696(08)60100-x. [DOI] [PubMed] [Google Scholar]
- Brodsky W. Y., Uryvaeva I. V. Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol. 1977;50:275–332. doi: 10.1016/s0074-7696(08)60100-x. [DOI] [PubMed] [Google Scholar]
- Brooks P. J., Marietta C., Goldman D. DNA mismatch repair and DNA methylation in adult brain neurons. J Neurosci. 1996 Feb 1;16(3):939–945. doi: 10.1523/JNEUROSCI.16-03-00939.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown T. C., Jiricny J. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell. 1987 Sep 11;50(6):945–950. doi: 10.1016/0092-8674(87)90521-6. [DOI] [PubMed] [Google Scholar]
- Carriere R. The growth of liver parenchymal nuclei and its endocrine regulation. Int Rev Cytol. 1969;25:201–277. doi: 10.1016/s0074-7696(08)60204-1. [DOI] [PubMed] [Google Scholar]
- Cooper D. N., Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet. 1989 Sep;83(2):181–188. doi: 10.1007/BF00286715. [DOI] [PubMed] [Google Scholar]
- Cooper D. N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. doi: 10.1007/BF00278187. [DOI] [PubMed] [Google Scholar]
- Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
- Curtis H. J. Genetic factors in aging. Adv Genet. 1971;16:305–324. [PubMed] [Google Scholar]
- Drahovsky D., Boehm T. L. Enzymatic DNA methylation in higher eukaryotes. Int J Biochem. 1980;12(4):523–528. doi: 10.1016/0020-711x(80)90002-6. [DOI] [PubMed] [Google Scholar]
- Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drost J. B., Lee W. R. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995;25 (Suppl 26):48–64. doi: 10.1002/em.2850250609. [DOI] [PubMed] [Google Scholar]
- Dycaico M. J., Provost G. S., Kretz P. L., Ransom S. L., Moores J. C., Short J. M. The use of shuttle vectors for mutation analysis in transgenic mice and rats. Mutat Res. 1994 Jun 1;307(2):461–478. doi: 10.1016/0027-5107(94)90257-7. [DOI] [PubMed] [Google Scholar]
- Eldridge S. R., Goldsworthy S. M. Cell proliferation rates in common cancer target tissues of B6C3F1 mice and F344 rats: effects of age, gender, and choice of marker. Fundam Appl Toxicol. 1996 Aug;32(2):159–167. doi: 10.1006/faat.1996.0119. [DOI] [PubMed] [Google Scholar]
- Farabaugh P. J. Sequence of the lacI gene. Nature. 1978 Aug 24;274(5673):765–769. doi: 10.1038/274765a0. [DOI] [PubMed] [Google Scholar]
- Franks L. M., Wilson P. D., Whelan R. D. The effects of age on total DNA and cell number in the mouse brain. Gerontologia. 1974;20(1):21–26. doi: 10.1159/000211994. [DOI] [PubMed] [Google Scholar]
- Gama-Sosa M. A., Midgett R. M., Slagel V. A., Githens S., Kuo K. C., Gehrke C. W., Ehrlich M. Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta. 1983 Jun 24;740(2):212–219. doi: 10.1016/0167-4781(83)90079-9. [DOI] [PubMed] [Google Scholar]
- Heddle J. A. The role of proliferation in the origin of mutations in mammalian cells. Drug Metab Rev. 1998 May;30(2):327–338. doi: 10.3109/03602539808996316. [DOI] [PubMed] [Google Scholar]
- Holmquist G. P. Chronic low-dose lesion equilibrium along genes: measurement, molecular epidemiology, and theory of the minimal relevant dose. Mutat Res. 1998 Sep 20;405(2):155–159. doi: 10.1016/s0027-5107(98)00132-8. [DOI] [PubMed] [Google Scholar]
- James S. J., Muskhelishvili L., Gaylor D. W., Turturro A., Hart R. Upregulation of apoptosis with dietary restriction: implications for carcinogenesis and aging. Environ Health Perspect. 1998 Feb;106 (Suppl 1):307–312. doi: 10.1289/ehp.98106s1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanungo M. S., Saran S. Methylation of DNA of the brain and liver of young and old rats. Indian J Biochem Biophys. 1992 Feb;29(1):49–53. [PubMed] [Google Scholar]
- Koeberl D. D., Bottema C. D., Ketterling R. P., Bridge P. J., Lillicrap D. P., Sommer S. S. Mutations causing hemophilia B: direct estimate of the underlying rates of spontaneous germ-line transitions, transversions, and deletions in a human gene. Am J Hum Genet. 1990 Aug;47(2):202–217. [PMC free article] [PubMed] [Google Scholar]
- Kohler S. W., Provost G. S., Fieck A., Kretz P. L., Bullock W. O., Sorge J. A., Putman D. L., Short J. M. Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7958–7962. doi: 10.1073/pnas.88.18.7958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohler S. W., Provost G. S., Kretz P. L., Dycaico M. J., Sorge J. A., Short J. M. Development of a short-term, in vivo mutagenesis assay: the effects of methylation on the recovery of a lambda phage shuttle vector from transgenic mice. Nucleic Acids Res. 1990 May 25;18(10):3007–3013. doi: 10.1093/nar/18.10.3007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W. H., Ellsworth D. L., Krushkal J., Chang B. H., Hewett-Emmett D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol. 1996 Feb;5(1):182–187. doi: 10.1006/mpev.1996.0012. [DOI] [PubMed] [Google Scholar]
- Li W. H., Tanimura M. The molecular clock runs more slowly in man than in apes and monkeys. Nature. 1987 Mar 5;326(6108):93–96. doi: 10.1038/326093a0. [DOI] [PubMed] [Google Scholar]
- Loeb L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991 Jun 15;51(12):3075–3079. [PubMed] [Google Scholar]
- Marietta C., Palombo F., Gallinari P., Jiricny J., Brooks P. J. Expression of long-patch and short-patch DNA mismatch repair proteins in the embryonic and adult mammalian brain. Brain Res Mol Brain Res. 1998 Jan;53(1-2):317–320. doi: 10.1016/s0169-328x(97)00311-2. [DOI] [PubMed] [Google Scholar]
- Matsuo K., Clay O., Takahashi T., Silke J., Schaffner W. Evidence for erosion of mouse CpG islands during mammalian evolution. Somat Cell Mol Genet. 1993 Nov;19(6):543–555. doi: 10.1007/BF01233381. [DOI] [PubMed] [Google Scholar]
- Mazin A. L. Life span prediction from the rate of age-related DNA demethylation in normal and cancer cell lines. Exp Gerontol. 1995 Sep-Oct;30(5):475–484. doi: 10.1016/0531-5565(95)00004-z. [DOI] [PubMed] [Google Scholar]
- Mirsalis J. C., Monforte J. A., Winegar R. A. Transgenic animal models for measuring mutations in vivo. Crit Rev Toxicol. 1994;24(3):255–280. doi: 10.3109/10408449409021608. [DOI] [PubMed] [Google Scholar]
- Ochiai M., Ishida K., Ushijima T., Suzuki T., Sofuni T., Sugimura T., Nagao M. DNA adduct level induced by 2-amino-3,4-dimethylimidazo[4,5-f]-quinoline in Big Blue mice does not correlate with mutagenicity. Mutagenesis. 1998 Jul;13(4):381–384. doi: 10.1093/mutage/13.4.381. [DOI] [PubMed] [Google Scholar]
- Okonogi H., Ushijima T., Zhang X. B., Heddle J. A., Suzuki T., Sofuni T., Felton J. S., Tucker J. D., Sugimura T., Nagao M. Agreement of mutational characteristics of heterocyclic amines in lacI of the Big Blue mouse with those in tumor related genes in rodents. Carcinogenesis. 1997 Apr;18(4):745–748. doi: 10.1093/carcin/18.4.745. [DOI] [PubMed] [Google Scholar]
- Provost G. S., Short J. M. Characterization of mutations induced by ethylnitrosourea in seminiferous tubule germ cells of transgenic B6C3F1 mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6564–6568. doi: 10.1073/pnas.91.14.6564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramchandani S., Bhattacharya S. K., Cervoni N., Szyf M. DNA methylation is a reversible biological signal. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6107–6112. doi: 10.1073/pnas.96.11.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rein T., DePamphilis M. L., Zorbas H. Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res. 1998 May 15;26(10):2255–2264. doi: 10.1093/nar/26.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultze B., Kellerer A. M., Grossmann C., Maurer W. Growth fraction and cycle duration of hepatocytes in the three-week-old rat. Cell Tissue Kinet. 1978 May;11(3):241–249. doi: 10.1111/j.1365-2184.1978.tb00892.x. [DOI] [PubMed] [Google Scholar]
- Scrable H., Stambrook P. J. Activation of the lac repressor in the transgenic mouse. Genetics. 1997 Sep;147(1):297–304. doi: 10.1093/genetics/147.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen J. C., Rideout W. M., 3rd, Jones P. A. High frequency mutagenesis by a DNA methyltransferase. Cell. 1992 Dec 24;71(7):1073–1080. doi: 10.1016/s0092-8674(05)80057-1. [DOI] [PubMed] [Google Scholar]
- Shen J. C., Rideout W. M., 3rd, Jones P. A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 1994 Mar 25;22(6):972–976. doi: 10.1093/nar/22.6.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singhal R. P., Mays-Hoopes L. L., Eichhorn G. L. DNA methylation in aging of mice. Mech Ageing Dev. 1987 Dec;41(3):199–210. doi: 10.1016/0047-6374(87)90040-6. [DOI] [PubMed] [Google Scholar]
- Skopek T. R., Kort K. L., Marino D. R. Relative sensitivity of the endogenous hprt gene and lacI transgene in ENU-treated Big Blue B6C3F1 mice. Environ Mol Mutagen. 1995;26(1):9–15. doi: 10.1002/em.2850260103. [DOI] [PubMed] [Google Scholar]
- Skopek T., Marino D., Kort K., Miller J., Trumbauer M., Gopal S., Chen H. Effect of target gene CpG content on spontaneous mutation in299 transgenic mice. Mutat Res. 1998 May 25;400(1-2):77–88. doi: 10.1016/s0027-5107(98)00040-2. [DOI] [PubMed] [Google Scholar]
- Steinberg R. A., Gorman K. B. Linked spontaneous CG----TA mutations at CpG sites in the gene for protein kinase regulatory subunit. Mol Cell Biol. 1992 Feb;12(2):767–772. doi: 10.1128/mcb.12.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuart G. R., Oda Y., de Boer J. G., Glickman B. W. Mutation frequency and specificity with age in liver, bladder and brain of lacI transgenic mice. Genetics. 2000 Mar;154(3):1291–1300. doi: 10.1093/genetics/154.3.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tao K. S., Urlando C., Heddle J. A. Comparison of somatic mutation in a transgenic versus host locus. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10681–10685. doi: 10.1073/pnas.90.22.10681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tawa R., Ono T., Kurishita A., Okada S., Hirose S. Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation. 1990 Oct;45(1):44–48. doi: 10.1111/j.1432-0436.1990.tb00455.x. [DOI] [PubMed] [Google Scholar]
- Thompson J. N., Jr, Woodruff R. C., Huai H. Mutation rate: a simple concept has become complex. Environ Mol Mutagen. 1998;32(4):292–300. doi: 10.1002/(sici)1098-2280(1998)32:4<292::aid-em2>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Uryvaeva I. V. Biological significance of liver cell polyploidy: an hypothesis. J Theor Biol. 1981 Apr 21;89(4):557–571. doi: 10.1016/0022-5193(81)90028-x. [DOI] [PubMed] [Google Scholar]
- Walker V. E., Gorelick N. J., Andrews J. L., Craft T. R., deBoer J. G., Glickman B. W., Skopek T. R. Frequency and spectrum of ethylnitrosourea-induced mutation at the hprt and lacI loci in splenic lymphocytes of exposed lacI transgenic mice. Cancer Res. 1996 Oct 15;56(20):4654–4661. [PubMed] [Google Scholar]
- Walter C. A., Intano G. W., McCarrey J. R., McMahan C. A., Walter R. B. Mutation frequency declines during spermatogenesis in young mice but increases in old mice. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10015–10019. doi: 10.1073/pnas.95.17.10015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson V. L., Smith R. A., Ma S., Cutler R. G. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987 Jul 25;262(21):9948–9951. [PubMed] [Google Scholar]
- Winick M., Brasel J. A., Rosso P. Nutrition and cell growth. Curr Concepts Nutr. 1972;1:49–97. [PubMed] [Google Scholar]
- Yang A. S., Gonzalgo M. L., Zingg J. M., Millar R. P., Buckley J. D., Jones P. A. The rate of CpG mutation in Alu repetitive elements within the p53 tumor suppressor gene in the primate germline. J Mol Biol. 1996 May 3;258(2):240–250. doi: 10.1006/jmbi.1996.0246. [DOI] [PubMed] [Google Scholar]
- You Y. H., Halangoda A., Buettner V., Hill K., Sommer S., Pfeifer G. Methylation of CpG dinucleotides in the lacI gene of the Big Blue transgenic mouse. Mutat Res. 1998 Dec 3;420(1-3):55–65. doi: 10.1016/s1383-5718(98)00147-8. [DOI] [PubMed] [Google Scholar]
- Zhang X., Mathews C. K. Effect of DNA cytosine methylation upon deamination-induced mutagenesis in a natural target sequence in duplex DNA. J Biol Chem. 1994 Mar 11;269(10):7066–7069. [PubMed] [Google Scholar]
- de Boer J. G., Erfle H., Holcroft J., Walsh D., Dycaico M., Provost S., Short J., Glickman B. W. Spontaneous mutants recovered from liver and germ cell tissue of low copy number lacI transgenic rats. Mutat Res. 1996 Jun 10;352(1-2):73–78. doi: 10.1016/0027-5107(95)00254-5. [DOI] [PubMed] [Google Scholar]
- de Boer J. G., Erfle H., Walsh D., Holcroft J., Provost J. S., Rogers B., Tindall K. R., Glickman B. W. Spectrum of spontaneous mutations in liver tissue of lacI transgenic mice. Environ Mol Mutagen. 1997;30(3):273–286. [PubMed] [Google Scholar]
- de Boer J. G., Glickman B. W. The lacI gene as a target for mutation in transgenic rodents and Escherichia coli. Genetics. 1998 Apr;148(4):1441–1451. doi: 10.1093/genetics/148.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]