Skip to main content
Genetics logoLink to Genetics
. 2000 Jul;155(3):1369–1378. doi: 10.1093/genetics/155.3.1369

Combined analyses of data from quantitative trait loci mapping studies. Chromosome 4 effects on porcine growth and fatness.

G A Walling 1, P M Visscher 1, L Andersson 1, M F Rothschild 1, L Wang 1, G Moser 1, M A Groenen 1, J P Bidanel 1, S Cepica 1, A L Archibald 1, H Geldermann 1, D J de Koning 1, D Milan 1, C S Haley 1
PMCID: PMC1461141  PMID: 10880495

Abstract

For many species several similar QTL mapping populations have been produced and analyzed independently. Joint analysis of such data could be used to increase power to detect QTL and evaluate population differences. In this study, data were collated on almost 3000 pigs from seven different F(2) crosses between Western commercial breeds and either the European wild boar or the Chinese Meishan breed. Genotypes were available for 31 markers on chromosome 4 (on average 8.3 markers per population). Data from three traits common to all populations (birth weight, mean backfat depth at slaughter or end of test, and growth rate from birth to slaughter or end of test) were analyzed for individual populations and jointly. A QTL influencing birth weight was detected in one individual population and in the combined data, with no significant interaction of the QTL effect with population. A QTL affecting backfat that had a significantly greater effect in wild boar than in Meishan crosses was detected. Some evidence for a QTL affecting growth rate was detected in all populations, with no significant differences between populations. This study is the largest F(2) QTL analysis achieved in a livestock species and demonstrates the potential of joint analysis.

Full Text

The Full Text of this article is available as a PDF (115.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison D. B., Heo M. Meta-analysis of linkage data under worst-case conditions: a demonstration using the human OB region. Genetics. 1998 Feb;148(2):859–865. doi: 10.1093/genetics/148.2.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson L., Haley C. S., Ellegren H., Knott S. A., Johansson M., Andersson K., Andersson-Eklund L., Edfors-Lilja I., Fredholm M., Hansson I. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science. 1994 Mar 25;263(5154):1771–1774. doi: 10.1126/science.8134840. [DOI] [PubMed] [Google Scholar]
  3. Archibald A. L., Haley C. S., Brown J. F., Couperwhite S., McQueen H. A., Nicholson D., Coppieters W., Van de Weghe A., Stratil A., Winterø A. K. The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome. 1995 Mar;6(3):157–175. doi: 10.1007/BF00293008. [DOI] [PubMed] [Google Scholar]
  4. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  6. Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Janss L. L., Van Arendonk J. A., Brascamp E. W. Segregation analyses for presence of major genes affecting growth, backfat, and litter size in Dutch Meishan crossbreds. J Anim Sci. 1997 Nov;75(11):2864–2876. doi: 10.2527/1997.75112864x. [DOI] [PubMed] [Google Scholar]
  8. Knott S. A., Marklund L., Haley C. S., Andersson K., Davies W., Ellegren H., Fredholm M., Hansson I., Hoyheim B., Lundström K. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics. 1998 Jun;149(2):1069–1080. doi: 10.1093/genetics/149.2.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
  10. Marklund L., Johansson Moller M., Høyheim B., Davies W., Fredholm M., Juneja R. K., Mariani P., Coppieters W., Ellegren H., Andersson L. A comprehensive linkage map of the pig based on a wild pig-Large White intercross. Anim Genet. 1996 Aug;27(4):255–269. doi: 10.1111/j.1365-2052.1996.tb00487.x. [DOI] [PubMed] [Google Scholar]
  11. Rohrer G. A., Alexander L. J., Hu Z., Smith T. P., Keele J. W., Beattie C. W. A comprehensive map of the porcine genome. Genome Res. 1996 May;6(5):371–391. doi: 10.1101/gr.6.5.371. [DOI] [PubMed] [Google Scholar]
  12. Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Walling G. A., Archibald A. L., Cattermole J. A., Downing A. C., Finlayson H. A., Nicholson D., Visscher P. M., Walker C. A., Haley C. S. Mapping of quantitative trait loci on porcine chromosome 4. Anim Genet. 1998 Dec;29(6):415–424. doi: 10.1046/j.1365-2052.1998.296360.x. [DOI] [PubMed] [Google Scholar]
  14. de Koning D. J., Janss L. L., Rattink A. P., van Oers P. A., de Vries B. J., Groenen M. A., van der Poel J. J., de Groot P. N., Brascamp E. W., van Arendonk J. A. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics. 1999 Aug;152(4):1679–1690. doi: 10.1093/genetics/152.4.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES