Skip to main content
Genetics logoLink to Genetics
. 2000 Jul;155(3):1195–1211. doi: 10.1093/genetics/155.3.1195

Chromosomal position effects reveal different cis-acting requirements for rDNA transcription and sex chromosome pairing in Drosophila melanogaster.

A Briscoe Jr 1, J E Tomkiel 1
PMCID: PMC1461147  PMID: 10880481

Abstract

In Drosophila melanogaster, the rDNA loci function in ribosome biogenesis and nucleolar formation and also as sex chromosome pairing sites in male meiosis. These activities are not dependent on the heterochromatic location of the rDNA, because euchromatic transgenes are competent to form nucleoli and restore pairing to rDNA-deficient X chromosomes. These transgene studies, however, do not address requirements for the function of the endogenous rDNA loci within the heterochromatin. Here we describe two chromosome rearrangements that disrupt rDNA functions. Both rearrangements are translocations that cause an extreme bobbed visible phenotype and XY nondisjunction and meiotic drive in males. However, neither rearrangement interacts with a specific Y chromosome, Ymal(+), that induces male sterility in combination with rDNA deletions. Molecular studies show that the translocations are not associated with gross rearrangements of the rDNA repeat arrays. Rather, suppression of the bobbed phenotypes by Y heterochromatin suggests that decreased rDNA function is caused by a chromosomal position effect. While both translocations affect rDNA transcription, only one disrupts meiotic XY pairing, indicating that there are different cis-acting requirements for rDNA transcription and rDNA-mediated meiotic pairing.

Full Text

The Full Text of this article is available as a PDF (340.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allshire R. C., Javerzat J. P., Redhead N. J., Cranston G. Position effect variegation at fission yeast centromeres. Cell. 1994 Jan 14;76(1):157–169. doi: 10.1016/0092-8674(94)90180-5. [DOI] [PubMed] [Google Scholar]
  2. Allshire R. C., Nimmo E. R., Ekwall K., Javerzat J. P., Cranston G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 1995 Jan 15;9(2):218–233. doi: 10.1101/gad.9.2.218. [DOI] [PubMed] [Google Scholar]
  3. Appels R., Hilliker A. J. The cytogenetic boundaries of the rDNA region within heterochromatin in the X chromosome of Drosophila melanogaster and their relation to male meiotic pairing sites. Genet Res. 1982 Apr;39(2):149–156. doi: 10.1017/s001667230002084x. [DOI] [PubMed] [Google Scholar]
  4. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker W. K. Evidence for position-effect suppression of the ribosomal RNA cistrons in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2472–2476. doi: 10.1073/pnas.68.10.2472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Basu J., Logarinho E., Herrmann S., Bousbaa H., Li Z., Chan G. K., Yen T. J., Sunkel C. E., Goldberg M. L. Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod. Chromosoma. 1998 Dec;107(6-7):376–385. doi: 10.1007/s004120050321. [DOI] [PubMed] [Google Scholar]
  7. Beadle G. W. A Possible Influence of the Spindle Fibre on Crossing-Over in Drosophila. Proc Natl Acad Sci U S A. 1932 Feb;18(2):160–165. doi: 10.1073/pnas.18.2.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bender W., Spierer P., Hogness D. S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol. 1983 Jul 25;168(1):17–33. doi: 10.1016/s0022-2836(83)80320-9. [DOI] [PubMed] [Google Scholar]
  9. Brown K. E., Guest S. S., Smale S. T., Hahm K., Merkenschlager M., Fisher A. G. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 1997 Dec 12;91(6):845–854. doi: 10.1016/s0092-8674(00)80472-9. [DOI] [PubMed] [Google Scholar]
  10. Brutlag D. L. Molecular arrangement and evolution of heterochromatic DNA. Annu Rev Genet. 1980;14:121–144. doi: 10.1146/annurev.ge.14.120180.001005. [DOI] [PubMed] [Google Scholar]
  11. COOPER K. W. Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of "heterochromatin". Chromosoma. 1959;10:535–588. doi: 10.1007/BF00396588. [DOI] [PubMed] [Google Scholar]
  12. COOPER K. W. MEIOTIC CONJUNCTIVE ELEMENTS NOT INVOLVING CHIASMATA. Proc Natl Acad Sci U S A. 1964 Nov;52:1248–1255. doi: 10.1073/pnas.52.5.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Castrillon D. H., Gönczy P., Alexander S., Rawson R., Eberhart C. G., Viswanathan S., DiNardo S., Wasserman S. A. Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics. 1993 Oct;135(2):489–505. doi: 10.1093/genetics/135.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dawid I. B., Wellauer P. K., Long E. O. Ribosomal DNA in Drosophila melanogaster. I. Isolation and characterization of cloned fragments. J Mol Biol. 1978 Dec 25;126(4):749–768. doi: 10.1016/0022-2836(78)90018-9. [DOI] [PubMed] [Google Scholar]
  15. Demerec M. Genetic Behavior of Euchromatic Segments Inserted into Heterochromatin. Genetics. 1940 Nov;25(6):618–627. doi: 10.1093/genetics/25.6.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dernburg A. F., Daily D. R., Yook K. J., Corbin J. A., Sedat J. W., Sullivan W. Selective loss of sperm bearing a compound chromosome in the Drosophila female. Genetics. 1996 Aug;143(4):1629–1642. doi: 10.1093/genetics/143.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dimitri P., Pisano C. Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics. 1989 Aug;122(4):793–800. doi: 10.1093/genetics/122.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dobzhansky T. Translocations Involving the Third and the Fourth Chromosomes of DROSOPHILA MELANOGASTER. Genetics. 1930 Jul;15(4):347–399. doi: 10.1093/genetics/15.4.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Earnshaw W. C., Ratrie H., 3rd, Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 1989 Jun;98(1):1–12. doi: 10.1007/BF00293329. [DOI] [PubMed] [Google Scholar]
  20. Eberl D. F., Duyf B. J., Hilliker A. J. The role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster. Genetics. 1993 May;134(1):277–292. doi: 10.1093/genetics/134.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fisher A. M., Al-Gazali L., Pramathan T., Quaife R., Cockwell A. E., Barber J. C., Earnshaw W. C., Axelman J., Migeon B. R., Tyler-Smith C. Centromeric inactivation in a dicentric human Y;21 translocation chromosome. Chromosoma. 1997 Sep;106(4):199–206. doi: 10.1007/s004120050240. [DOI] [PubMed] [Google Scholar]
  22. Garcia S. N., Pillus L. Net results of nucleolar dynamics. Cell. 1999 Jun 25;97(7):825–828. doi: 10.1016/s0092-8674(00)80794-1. [DOI] [PubMed] [Google Scholar]
  23. Glover D. M., Hogness D. S. A novel arrangement of the 18S and 28S sequences in a repeating unit of Drosophila melanogaster rDNA. Cell. 1977 Feb;10(2):167–176. doi: 10.1016/0092-8674(77)90212-4. [DOI] [PubMed] [Google Scholar]
  24. Gotta M., Strahl-Bolsinger S., Renauld H., Laroche T., Kennedy B. K., Grunstein M., Gasser S. M. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 1997 Jun 2;16(11):3243–3255. doi: 10.1093/emboj/16.11.3243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gowen J W, Gay E H. Chromosome Constitution and Behavior in Eversporting and Mottling in Drosophila Melanogaster. Genetics. 1934 May;19(3):189–208. doi: 10.1093/genetics/19.3.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hayward D. C., Glover D. M. Analysis of the Drosophila rDNA promoter by transient expression. Nucleic Acids Res. 1988 May 25;16(10):4253–4268. doi: 10.1093/nar/16.10.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Henikoff S., Jackson J. M., Talbert P. B. Distance and pairing effects on the brownDominant heterochromatic element in Drosophila. Genetics. 1995 Jul;140(3):1007–1017. doi: 10.1093/genetics/140.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Javerzat J. P., McGurk G., Cranston G., Barreau C., Bernard P., Gordon C., Allshire R. Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation. Mol Cell Biol. 1999 Jul;19(7):5155–5165. doi: 10.1128/mcb.19.7.5155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Karpen G. H., Schaefer J. E., Laird C. D. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 1988 Dec;2(12B):1745–1763. doi: 10.1101/gad.2.12b.1745. [DOI] [PubMed] [Google Scholar]
  30. Labella T., Vicari L., Manzi A., Graziani F. Expression of rDNA insertions during rDNA magnification in D. melanogaster. Mol Gen Genet. 1983;190(3):487–493. doi: 10.1007/BF00331081. [DOI] [PubMed] [Google Scholar]
  31. Lifschytz E., Hareven D. Gene expression and the control of spermatid morphogenesis in Drosophila melanogaster. Dev Biol. 1977 Jul 15;58(2):276–294. doi: 10.1016/0012-1606(77)90092-6. [DOI] [PubMed] [Google Scholar]
  32. Lifschytz E., Lindsley D. L. The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation). Proc Natl Acad Sci U S A. 1972 Jan;69(1):182–186. doi: 10.1073/pnas.69.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Livak K. J. Detailed structure of the Drosophila melanogaster stellate genes and their transcripts. Genetics. 1990 Feb;124(2):303–316. doi: 10.1093/genetics/124.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Livak K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984 Aug;107(4):611–634. doi: 10.1093/genetics/107.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. McKee B. D., Habera L., Vrana J. A. Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics. 1992 Oct;132(2):529–544. doi: 10.1093/genetics/132.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McKee B. D., Karpen G. H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell. 1990 Apr 6;61(1):61–72. doi: 10.1016/0092-8674(90)90215-z. [DOI] [PubMed] [Google Scholar]
  37. McKee B. D., Wilhelm K., Merrill C., Ren X. Male sterility and meiotic drive associated with sex chromosome rearrangements in Drosophila. Role of X-Y pairing. Genetics. 1998 May;149(1):143–155. doi: 10.1093/genetics/149.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McKee B., Lindsley D. L. Inseparability of X-Heterochromatic Functions Responsible for X:Y Pairing, Meiotic Drive, and Male Fertility in Drosophila melanogaster. Genetics. 1987 Jul;116(3):399–407. doi: 10.1093/genetics/116.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. McKee B. Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males. Genetics. 1984 Mar;106(3):403–422. doi: 10.1093/genetics/106.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Merrill C. J., Chakravarti D., Habera L., Das S., Eisenhour L., McKee B. D. Promoter-containing ribosomal DNA fragments function as X-Y meiotic pairing sites in D. melanogaster males. Dev Genet. 1992;13(6):468–484. doi: 10.1002/dvg.1020130609. [DOI] [PubMed] [Google Scholar]
  41. Miller J. R., Hayward D. C., Glover D. M. Transcription of the 'non-transcribed' spacer of Drosophila melanogaster rDNA. Nucleic Acids Res. 1983 Jan 11;11(1):11–19. doi: 10.1093/nar/11.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Murnane J. P. Role of induced genetic instability in the mutagenic effects of chemicals and radiation. Mutat Res. 1996 Jan;367(1):11–23. [PubMed] [Google Scholar]
  43. PEACOCK W. J. NONRANDOM SEGREGATION OF CHROMOSOMES IN DROSOPHILA MALES. Genetics. 1965 Apr;51:573–583. doi: 10.1093/genetics/51.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Park H. S., Yamamoto M. T. The centric region of the X chromosome rDNA functions in male meiotic pairing in Drosophila melanogaster. Chromosoma. 1995 Jul;103(10):700–707. doi: 10.1007/BF00344231. [DOI] [PubMed] [Google Scholar]
  45. Peacock W. J., Lohe A. R., Gerlach W. L., Dunsmuir P., Dennis E. S., Appels R. Fine structure and evolution of DNA in heterochromatin. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1121–1135. doi: 10.1101/sqb.1978.042.01.113. [DOI] [PubMed] [Google Scholar]
  46. Pellegrini M., Manning J., Davidson N. Sequence arrangement of the rDNA of Drosophila melanogaster. Cell. 1977 Feb;10(2):213–214. doi: 10.1016/0092-8674(77)90215-x. [DOI] [PubMed] [Google Scholar]
  47. Polanco C., González A. I., de la Fuente, Dover G. A. Multigene family of ribosomal DNA in Drosophila melanogaster reveals contrasting patterns of homogenization for IGS and ITS spacer regions. A possible mechanism to resolve this paradox. Genetics. 1998 May;149(1):243–256. doi: 10.1093/genetics/149.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Procunier J. D., Tartof K. D. A genetic locus having trans and contiguous cis functions that control the disproportionate replication of ribosomal RNA genes in Drosophila melanogaster. Genetics. 1978 Jan;88(1):67–79. doi: 10.1093/genetics/88.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. RITOSSA F. M., SPIEGELMAN S. LOCALIZATION OF DNA COMPLEMENTARY TO RIBOSOMAL RNA IN THE NUCLEOLUS ORGANIZER REGION OF DROSOPHILA MELANOGASTER. Proc Natl Acad Sci U S A. 1965 Apr;53:737–745. doi: 10.1073/pnas.53.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ren X., Eisenhour L., Hong C., Lee Y., McKee B. D. Roles of rDNA spacer and transcription unit-sequences in X-Y meiotic chromosome pairing in Drosophila melanogaster males. Chromosoma. 1997 Jun;106(1):29–36. doi: 10.1007/s004120050221. [DOI] [PubMed] [Google Scholar]
  51. Ritossa F. M., Atwood K. C., Spiegelman S. A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of "ribosomal" DNA. Genetics. 1966 Sep;54(3):819–834. doi: 10.1093/genetics/54.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ritossa F. M. Unstable redundancy of genes for ribosomal RNA. Proc Natl Acad Sci U S A. 1968 Jun;60(2):509–516. doi: 10.1073/pnas.60.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Ritossa F. Procedure for magnification of lethal deletions of genes for ribosomal RNA. Nat New Biol. 1972 Nov 22;240(99):109–111. doi: 10.1038/newbio240109a0. [DOI] [PubMed] [Google Scholar]
  54. Robbins L. G. Are unpaired chromosomes spermicidal?: A maximum-likelihood analysis of segregation and meiotic drive in Drosophila melanogaster males deficient for the ribosomal-dna. Genetics. 1999 Jan;151(1):251–262. doi: 10.1093/genetics/151.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rudolph J. E., Kimble M., Hoyle H. D., Subler M. A., Raff E. C. Three Drosophila beta-tubulin sequences: a developmentally regulated isoform (beta 3), the testis-specific isoform (beta 2), and an assembly-defective mutation of the testis-specific isoform (B2t8) reveal both an ancient divergence in metazoan isotypes and structural constraints for beta-tubulin function. Mol Cell Biol. 1987 Jun;7(6):2231–2242. doi: 10.1128/mcb.7.6.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sandler L, Braver G. The Meiotic Loss of Unpaired Chromosomes in Drosophila Melanogaster. Genetics. 1954 May;39(3):365–377. doi: 10.1093/genetics/39.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Schalet A., Lefevre G., Jr The localization of "ordinary" sex-linked genes in section 20 of the polytene X chromosome of Drosophila melanogaster. Chromosoma. 1973 Nov 21;44(2):183–202. doi: 10.1007/BF00329116. [DOI] [PubMed] [Google Scholar]
  58. Schalet A., Lefevre G., Jr The localization of "ordinary" sex-linked genes in section 20 of the polytene X chromosome of Drosophila melanogaster. Chromosoma. 1973 Nov 21;44(2):183–202. doi: 10.1007/BF00329116. [DOI] [PubMed] [Google Scholar]
  59. Shermoen A. W., Kiefer B. I. Regulation in rDNA-deficient Drosophila melanogaster. Cell. 1975 Mar;4(3):275–280. doi: 10.1016/0092-8674(75)90176-2. [DOI] [PubMed] [Google Scholar]
  60. Simeone A., de Falco A., Macino G., Boncinelli E. Sequence organization of the ribosomal spacer of D.melanogaster. Nucleic Acids Res. 1982 Dec 20;10(24):8263–8272. doi: 10.1093/nar/10.24.8263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Straight A. F., Shou W., Dowd G. J., Turck C. W., Deshaies R. J., Johnson A. D., Moazed D. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell. 1999 Apr 16;97(2):245–256. doi: 10.1016/s0092-8674(00)80734-5. [DOI] [PubMed] [Google Scholar]
  62. Sullivan B. A., Schwartz S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet. 1995 Dec;4(12):2189–2197. doi: 10.1093/hmg/4.12.2189. [DOI] [PubMed] [Google Scholar]
  63. Tartof K. D., Hobbs C., Jones M. A structural basis for variegating position effects. Cell. 1984 Jul;37(3):869–878. doi: 10.1016/0092-8674(84)90422-7. [DOI] [PubMed] [Google Scholar]
  64. Tartof K. D. Regulation of ribosomal RNA gene multiplicity in Drosophila melanogaster. Genetics. 1973 Jan;73(1):57–71. doi: 10.1093/genetics/73.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tartof K. D. Unequal mitotic sister chromatin exchange as the mechanism of ribosomal RNA gene magnification. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1272–1276. doi: 10.1073/pnas.71.4.1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tautz D., Hancock J. M., Webb D. A., Tautz C., Dover G. A. Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Biol Evol. 1988 Jul;5(4):366–376. doi: 10.1093/oxfordjournals.molbev.a040500. [DOI] [PubMed] [Google Scholar]
  67. Terracol R., Iturbide Y., Prud'Homme N. Partial reversion at the bobbed locus of Drosophila melanogaster. Biol Cell. 1990;68(1):65–71. doi: 10.1111/j.1768-322x.1990.tb00895.x. [DOI] [PubMed] [Google Scholar]
  68. Terracol R., Prud'homme N. 26S and 18S rRNA synthesis in bobbed mutants of Drosophila melanogaster. Biochimie. 1981;63(5):451–455. doi: 10.1016/s0300-9084(81)80020-x. [DOI] [PubMed] [Google Scholar]
  69. Tokuyasu K. T., Peacock W. J., Hardy R. W. Dynamics of spermiogenesis in Drosophila melanogaster. VII. Effects of segregation distorter (SD) chromosome. J Ultrastruct Res. 1977 Jan;58(1):96–107. doi: 10.1016/s0022-5320(77)80011-7. [DOI] [PubMed] [Google Scholar]
  70. Wandall A. A stable dicentric chromosome: both centromeres develop kinetochores and attach to the spindle in monocentric and dicentric configuration. Chromosoma. 1994 Mar;103(1):56–62. doi: 10.1007/BF00364726. [DOI] [PubMed] [Google Scholar]
  71. Weinmann R. Regulation of ribosomal RNA and 5s RNA synthesis in Drosophila melanogaster. I. Bobbed mutants. Genetics. 1972 Oct;72(2):267–276. doi: 10.1093/genetics/72.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wellauer P. K., Dawid I. B. Ribosomal DNA in Drosophila melanogaster. II. Heteroduplex mapping of cloned and uncloned rDNA. J Mol Biol. 1978 Dec 25;126(4):769–782. doi: 10.1016/0022-2836(78)90019-0. [DOI] [PubMed] [Google Scholar]
  73. White R. L., Hogness D. S. R loop mapping of the 18S and 28S sequences in the long and short repeating units of Drosophila melanogaster rDNA. Cell. 1977 Feb;10(2):177–192. doi: 10.1016/0092-8674(77)90213-6. [DOI] [PubMed] [Google Scholar]
  74. Zuckerkandl E. A possible role of "inert" heterochromatin in cell differentiation. Action of and competition for "locking" molecules. Biochimie. 1974;56(6-7):937–954. doi: 10.1016/s0300-9084(74)80516-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES