Abstract
Two crystallographically defined tRNAs, yeast tRNAAsp and tRNAPhe, were used as substrates for oxidative cleavage by Fe.bleomycin to facilitate definition at high resolution of the structural elements in RNAs conducive to bleomycin binding and cleavage. Yeast tRNAAsp underwent cleavage at G45 and U66; yeast tRNAPhe was cleaved at four sites, namely G19, A31, U52 and A66. Only two of these six sites involved oxidative cleavage of a 5'-G.Pyr-3' sequence, but three sites were at the junction between single- and double-stranded regions of the RNA, consistent with a binding model in which the bithiazole + C-terminal substituent of bleomycin bind to minor groove structures on the RNA. Also studied were four tRNA transcripts believed on the basis of biochemical and chemical mapping experiments to share structural elements in common with the mature tRNAs. Cleavage of these tRNAs by Fe.bleomycin gave patterns of cleavage very different from each other and than those of the mature tRNAs. This observation suggests strongly that Fe.bleomycin cannot be used for chemical mapping in the same fashion as more classical reagents, such as Pb2+ or dimethyl sulfate. However, the great sensitivity of Fe.bleomycin to changes in nucleic acid structure argues that those species which do show similar patterns of cleavage must be very close in structure.
Full Text
The Full Text of this article is available as a PDF (210.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behlen L. S., Sampson J. R., DiRenzo A. B., Uhlenbeck O. C. Lead-catalyzed cleavage of yeast tRNAPhe mutants. Biochemistry. 1990 Mar 13;29(10):2515–2523. doi: 10.1021/bi00462a013. [DOI] [PubMed] [Google Scholar]
- Brown R. S., Dewan J. C., Klug A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry. 1985 Aug 27;24(18):4785–4801. doi: 10.1021/bi00339a012. [DOI] [PubMed] [Google Scholar]
- Carter B. J., de Vroom E., Long E. C., van der Marel G. A., van Boom J. H., Hecht S. M. Site-specific cleavage of RNA by Fe(II).bleomycin. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9373–9377. doi: 10.1073/pnas.87.23.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix D. J., Lin P. N., McKenzie A. R., Walden W. E., Theil E. C. The influence of the base-paired flanking region on structure and function of the ferritin mRNA iron regulatory element. J Mol Biol. 1993 May 20;231(2):230–240. doi: 10.1006/jmbi.1993.1278. [DOI] [PubMed] [Google Scholar]
- Giege R., Moras D., Thierry J. C. Yeast transfer RNAasp: a new high-resolution x-ray diffracting crystal form of a transfer RNA. J Mol Biol. 1977 Sep;115(1):91–96. doi: 10.1016/0022-2836(77)90248-0. [DOI] [PubMed] [Google Scholar]
- Giegé R., Florentz C., Garcia A., Grosjean H., Perret V., Puglisi J., Théobald-Dietrich A., Ebel J. P. Exploring the aminoacylation function of transfer RNA by macromolecular engineering approaches. Involvement of conformational features in the charging process of yeast tRNA(Asp). Biochimie. 1990 Jun-Jul;72(6-7):453–461. doi: 10.1016/0300-9084(90)90069-s. [DOI] [PubMed] [Google Scholar]
- Hall K. B., Sampson J. R., Uhlenbeck O. C., Redfield A. G. Structure of an unmodified tRNA molecule. Biochemistry. 1989 Jul 11;28(14):5794–5801. doi: 10.1021/bi00440a014. [DOI] [PubMed] [Google Scholar]
- Hecht S. M. RNA degradation by bleomycin, a naturally occurring bioconjugate. Bioconjug Chem. 1994 Nov-Dec;5(6):513–526. doi: 10.1021/bc00030a006. [DOI] [PubMed] [Google Scholar]
- Holbrook S. R., Kim S. H. Correlation between chemical modification and surface accessibility in yeast phenylalanine transfer RNA. Biopolymers. 1983 Apr;22(4):1145–1166. doi: 10.1002/bip.360220410. [DOI] [PubMed] [Google Scholar]
- Holmes C. E., Carter B. J., Hecht S. M. Characterization of iron (II).bleomycin-mediated RNA strand scission. Biochemistry. 1993 Apr 27;32(16):4293–4307. doi: 10.1021/bi00067a019. [DOI] [PubMed] [Google Scholar]
- Holmes C. E., Hecht S. M. Fe.bleomycin cleaves a transfer RNA precursor and its "transfer DNA" analog at the same major site. J Biol Chem. 1993 Dec 5;268(34):25909–25913. [PubMed] [Google Scholar]
- Hüttenhofer A., Hudson S., Noller H. F., Mascharak P. K. Cleavage of tRNA by Fe(II)-bleomycin. J Biol Chem. 1992 Dec 5;267(34):24471–24475. [PubMed] [Google Scholar]
- Kane S. A., Hecht S. M. Polynucleotide recognition and degradation by bleomycin. Prog Nucleic Acid Res Mol Biol. 1994;49:313–352. doi: 10.1016/s0079-6603(08)60054-9. [DOI] [PubMed] [Google Scholar]
- Kane S. A., Hecht S. M., Sun J. S., Garestier T., Hélène C. Specific cleavage of a DNA triple helix by FeII.bleomycin. Biochemistry. 1995 Dec 26;34(51):16715–16724. doi: 10.1021/bi00051a021. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
- Krzyzosiak W. J., Marciniec T., Wiewiorowski M., Romby P., Ebel J. P., Giegé R. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry. 1988 Jul 26;27(15):5771–5777. doi: 10.1021/bi00415a056. [DOI] [PubMed] [Google Scholar]
- Lavery R., Pullman A., Pullman B. The electrostatic molecular potential of yeast tRNAPhe. (I). The potential due to the phosphate backbone. Nucleic Acids Res. 1980 Mar 11;8(5):1061–1079. doi: 10.1093/nar/8.5.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magliozzo R. S., Peisach J., Ciriolo M. R. Transfer RNA is cleaved by activated bleomycin. Mol Pharmacol. 1989 Apr;35(4):428–432. [PubMed] [Google Scholar]
- Moras D., Comarmond M. B., Fischer J., Weiss R., Thierry J. C., Ebel J. P., Giegé R. Crystal structure of yeast tRNAAsp. Nature. 1980 Dec 25;288(5792):669–674. doi: 10.1038/288669a0. [DOI] [PubMed] [Google Scholar]
- Morgan M. A., Hecht S. M. Iron(II) bleomycin-mediated degradation of a DNA-RNA heteroduplex. Biochemistry. 1994 Aug 30;33(34):10286–10293. doi: 10.1021/bi00200a008. [DOI] [PubMed] [Google Scholar]
- Oppenheimer N. J., Rodriguez L. O., Hecht S. M. Structural studies of of "active complex" of bleomycin: assignment of ligands to the ferrous ion in a ferrous-bleomycin-carbon monoxide complex. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5616–5620. doi: 10.1073/pnas.76.11.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perret V., Florentz C., Puglisi J. D., Giegé R. Effect of conformational features on the aminoacylation of tRNAs and consequences on the permutation of tRNA specificities. J Mol Biol. 1992 Jul 20;226(2):323–333. doi: 10.1016/0022-2836(92)90950-o. [DOI] [PubMed] [Google Scholar]
- Perret V., Garcia A., Grosjean H., Ebel J. P., Florentz C., Giegé R. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature. 1990 Apr 19;344(6268):787–789. doi: 10.1038/344787a0. [DOI] [PubMed] [Google Scholar]
- Perret V., Garcia A., Puglisi J., Grosjean H., Ebel J. P., Florentz C., Giegé R. Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie. 1990 Oct;72(10):735–743. doi: 10.1016/0300-9084(90)90158-d. [DOI] [PubMed] [Google Scholar]
- Pütz J., Puglisi J. D., Florentz C., Giegé R. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase. Science. 1991 Jun 21;252(5013):1696–1699. doi: 10.1126/science.2047878. [DOI] [PubMed] [Google Scholar]
- Rhodes D. Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification. J Mol Biol. 1975 May 25;94(3):449–460. doi: 10.1016/0022-2836(75)90214-4. [DOI] [PubMed] [Google Scholar]
- Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
- Romby P., Moras D., Bergdoll M., Dumas P., Vlassov V. V., Westhof E., Ebel J. P., Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol. 1985 Aug 5;184(3):455–471. doi: 10.1016/0022-2836(85)90294-3. [DOI] [PubMed] [Google Scholar]
- Romby P., Moras D., Dumas P., Ebel J. P., Giegé R. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. J Mol Biol. 1987 May 5;195(1):193–204. doi: 10.1016/0022-2836(87)90336-6. [DOI] [PubMed] [Google Scholar]
- Rudinger J., Puglisi J. D., Pütz J., Schatz D., Eckstein F., Florentz C., Giegé R. Determinant nucleotides of yeast tRNA(Asp) interact directly with aspartyl-tRNA synthetase. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5882–5886. doi: 10.1073/pnas.89.13.5882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985 Jul 5;184(1):119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
- Westhof E., Dumas P., Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):112–123. [PubMed] [Google Scholar]
- Williams L. D., Goldberg I. H. Selective strand scission by intercalating drugs at DNA bulges. Biochemistry. 1988 Apr 19;27(8):3004–3011. doi: 10.1021/bi00408a051. [DOI] [PubMed] [Google Scholar]