Abstract
The body and fins of the zebrafish grow rapidly as juveniles and slower as they reach maturation. Throughout their lives, the fins grow isometrically with respect to the body. Growth of individual fin rays is achieved by the distal addition of bony segments. We have investigated the genetic control of mechanisms that initiate new segments or control size of newly initiated segments. We find that both segment initiation and segment length are regulated during fin growth in wild-type fish. We examined the growth properties of lof and sof fin length mutants for effects on the number and length of fin ray segments. Fins of lof mutants continue to grow rapidly even after wild-type fin growth slows, resulting in positive allometric growth and additional fin ray segments. We suggest that lof mutants bypass mechanisms that limit segment initiation. Isometric growth is retained in sof mutants, resulting in shorter fins one-half the length of wild-type fins. The primary defect in sof mutants is that fin ray segments are shorter than wild-type segments, although segment number is also diminished. Double mutants for sof;lof reveal that segment length and segment number are controlled in different pathways. Our findings suggest that the lof gene product regulates segment initiation and the sof gene product regulates segment length.
Full Text
The Full Text of this article is available as a PDF (161.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amsterdam A., Burgess S., Golling G., Chen W., Sun Z., Townsend K., Farrington S., Haldi M., Hopkins N. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 1999 Oct 15;13(20):2713–2724. doi: 10.1101/gad.13.20.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarti S., Streisinger G., Singer F., Walker C. Frequency of gamma-Ray Induced Specific Locus and Recessive Lethal Mutations in Mature Germ Cells of the Zebrafish, BRACHYDANIO RERIO. Genetics. 1983 Jan;103(1):109–123. doi: 10.1093/genetics/103.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conlon I., Raff M. Size control in animal development. Cell. 1999 Jan 22;96(2):235–244. doi: 10.1016/s0092-8674(00)80563-2. [DOI] [PubMed] [Google Scholar]
- GOSS R. J., STAGG M. W. The regeneration of fins and fin rays in Fundulus heteroclitus. J Exp Zool. 1957 Dec;136(3):487–507. doi: 10.1002/jez.1401360306. [DOI] [PubMed] [Google Scholar]
- Geisler R., Rauch G. J., Baier H., van Bebber F., Bross L., Dekens M. P., Finger K., Fricke C., Gates M. A., Geiger H. A radiation hybrid map of the zebrafish genome. Nat Genet. 1999 Sep;23(1):86–89. doi: 10.1038/12692. [DOI] [PubMed] [Google Scholar]
- Gould S. J. Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc. 1966 Nov;41(4):587–640. doi: 10.1111/j.1469-185x.1966.tb01624.x. [DOI] [PubMed] [Google Scholar]
- Géraudie J., Monnot M. J., Brulfert A., Ferretti P. Caudal fin regeneration in wild type and long-fin mutant zebrafish is affected by retinoic acid. Int J Dev Biol. 1995 Apr;39(2):373–381. [PubMed] [Google Scholar]
- HAAS H. J. Studies on mechanisms of joint and bone formation in the skeleton rays of fish fins. Dev Biol. 1962 Aug;5:1–34. doi: 10.1016/0012-1606(62)90002-7. [DOI] [PubMed] [Google Scholar]
- Hukriede N. A., Joly L., Tsang M., Miles J., Tellis P., Epstein J. A., Barbazuk W. B., Li F. N., Paw B., Postlethwait J. H. Radiation hybrid mapping of the zebrafish genome. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9745–9750. doi: 10.1073/pnas.96.17.9745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson S. L., Bennett P. Growth control in the ontogenetic and regenerating zebrafish fin. Methods Cell Biol. 1999;59:301–311. doi: 10.1016/s0091-679x(08)61831-2. [DOI] [PubMed] [Google Scholar]
- Johnson S. L., Weston J. A. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics. 1995 Dec;141(4):1583–1595. doi: 10.1093/genetics/141.4.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson S. L., Zon L. I. Genetic backgrounds and some standard stocks and strains used in zebrafish developmental biology and genetics. Methods Cell Biol. 1999;60:357–359. doi: 10.1016/s0091-679x(08)61910-x. [DOI] [PubMed] [Google Scholar]
- Knapik E. W., Goodman A., Ekker M., Chevrette M., Delgado J., Neuhauss S., Shimoda N., Driever W., Fishman M. C., Jacob H. J. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet. 1998 Apr;18(4):338–343. doi: 10.1038/ng0498-338. [DOI] [PubMed] [Google Scholar]
- Leevers S. J. Perspectives: cell biology. All creatures great and small. Science. 1999 Sep 24;285(5436):2082–2083. doi: 10.1126/science.285.5436.2082. [DOI] [PubMed] [Google Scholar]
- Santamaría J. A., Marí-Beffa M., Becerra J. Interactions of the lepidotrichial matrix components during tail fin regeneration in teleosts. Differentiation. 1992 Apr;49(3):143–150. doi: 10.1111/j.1432-0436.1992.tb00662.x. [DOI] [PubMed] [Google Scholar]
- Stern D. L., Emlen D. J. The developmental basis for allometry in insects. Development. 1999 Mar;126(6):1091–1101. doi: 10.1242/dev.126.6.1091. [DOI] [PubMed] [Google Scholar]
- Streisinger G., Walker C., Dower N., Knauber D., Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 1981 May 28;291(5813):293–296. doi: 10.1038/291293a0. [DOI] [PubMed] [Google Scholar]
- Tassava R. A., Goss R. J. Regeneration rate and amputation level in fish fins and lizard tails. Growth. 1966 Mar;30(1):9–21. [PubMed] [Google Scholar]
- Weinkove D., Neufeld T. P., Twardzik T., Waterfield M. D., Leevers S. J. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I(A) phosphoinositide 3-kinase and its adaptor. Curr Biol. 1999 Sep 23;9(18):1019–1029. doi: 10.1016/s0960-9822(99)80450-3. [DOI] [PubMed] [Google Scholar]
- van Eeden F. J., Granato M., Schach U., Brand M., Furutani-Seiki M., Haffter P., Hammerschmidt M., Heisenberg C. P., Jiang Y. J., Kane D. A. Genetic analysis of fin formation in the zebrafish, Danio rerio. Development. 1996 Dec;123:255–262. doi: 10.1242/dev.123.1.255. [DOI] [PubMed] [Google Scholar]