Abstract
The cryptocephal (crc) mutation causes pleiotropic defects in ecdysone-regulated events during Drosophila molting and metamorphosis. Here we report that crc encodes a Drosophila homolog of vertebrate ATF4, a member of the CREB/ATF family of basic-leucine zipper (bZIP) transcription factors. We identified three putative protein isoforms. CRC-A and CRC-B contain the bZIP domain, and CRC-D is a C-terminally truncated form. We have generated seven new crc alleles. Consistent with the molecular diversity of crc, these alleles show that crc is a complex genetic locus with two overlapping lethal complementation groups. Alleles representing both groups were rescued by a cDNA encoding CRC-B. One lethal group (crc(1), crc(R6), and crc(Rev8)) consists of strong hypomorphic or null alleles that are associated with mutations of both CRC-A and CRC-B. These mutants display defects associated with larval molting and pupariation. In addition, they fail to evert the head and fail to elongate the imaginal discs during pupation, and they display variable defects in the subsequent differentiation of the adult abdomen. The other group (crc(R1), crc(R2), crc(E85), crc(E98), and crc(929)) is associated with disruptions of CRC-A and CRC-D; except for a failure to properly elongate the leg discs, these mutants initiate metamorphosis normally. Subsequently, they display a novel metamorphic phenotype, involving collapse of the head and abdomen toward the thorax. The crc gene is expressed throughout development and in many tissues. In third instar larvae, crc expression is high in targets of ecdysone signaling, such as the leg and wing imaginal discs, and in the ring gland, the source of ecdysone. Together, these findings implicate CREB/ATF proteins in essential functions during molting and metamorphosis. In addition, the similarities between the mutant phenotypes of crc and the ecdysone-responsive genes indicate that these genes are likely to be involved in common signaling pathways.
Full Text
The Full Text of this article is available as a PDF (384.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andres A. J., Thummel C. S. The Drosophila 63F early puff contains E63-1, an ecdysone-inducible gene that encodes a novel Ca(2+)-binding protein. Development. 1995 Aug;121(8):2667–2679. doi: 10.1242/dev.121.8.2667. [DOI] [PubMed] [Google Scholar]
- Bainbridge S. P., Bownes M. Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol. 1981 Dec;66:57–80. [PubMed] [Google Scholar]
- Bartsch D., Ghirardi M., Skehel P. A., Karl K. A., Herder S. P., Chen M., Bailey C. H., Kandel E. R. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell. 1995 Dec 15;83(6):979–992. doi: 10.1016/0092-8674(95)90213-9. [DOI] [PubMed] [Google Scholar]
- Benveniste R. J., Taghert P. H. Cell type-specific regulatory sequences control expression of the Drosophila FMRF-NH2 neuropeptide gene. J Neurobiol. 1999 Mar;38(4):507–520. doi: 10.1002/(sici)1097-4695(199903)38:4<507::aid-neu7>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
- Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
- Broadus J., McCabe J. R., Endrizzi B., Thummel C. S., Woodard C. T. The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. Mol Cell. 1999 Feb;3(2):143–149. doi: 10.1016/s1097-2765(00)80305-6. [DOI] [PubMed] [Google Scholar]
- Burtis K. C., Thummel C. S., Jones C. W., Karim F. D., Hogness D. S. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell. 1990 Apr 6;61(1):85–99. doi: 10.1016/0092-8674(90)90217-3. [DOI] [PubMed] [Google Scholar]
- Cavener D. R., Ray S. C. Eukaryotic start and stop translation sites. Nucleic Acids Res. 1991 Jun 25;19(12):3185–3192. doi: 10.1093/nar/19.12.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crossgrove K., Bayer C. A., Fristrom J. W., Guild G. M. The Drosophila Broad-Complex early gene directly regulates late gene transcription during the ecdysone-induced puffing cascade. Dev Biol. 1996 Dec 15;180(2):745–758. doi: 10.1006/dbio.1996.0343. [DOI] [PubMed] [Google Scholar]
- D'Avino P. P., Thummel C. S. crooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis. Development. 1998 May;125(9):1733–1745. doi: 10.1242/dev.125.9.1733. [DOI] [PubMed] [Google Scholar]
- DiBello P. R., Withers D. A., Bayer C. A., Fristrom J. W., Guild G. M. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics. 1991 Oct;129(2):385–397. doi: 10.1093/genetics/129.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estes S. D., Stoler D. L., Anderson G. R. Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia. Exp Cell Res. 1995 Sep;220(1):47–54. doi: 10.1006/excr.1995.1290. [DOI] [PubMed] [Google Scholar]
- Fawcett T. W., Martindale J. L., Guyton K. Z., Hai T., Holbrook N. J. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J. 1999 Apr 1;339(Pt 1):135–141. [PMC free article] [PubMed] [Google Scholar]
- Fletcher J. C., Burtis K. C., Hogness D. S., Thummel C. S. The Drosophila E74 gene is required for metamorphosis and plays a role in the polytene chromosome puffing response to ecdysone. Development. 1995 May;121(5):1455–1465. doi: 10.1242/dev.121.5.1455. [DOI] [PubMed] [Google Scholar]
- Freeman M. R., Dobritsa A., Gaines P., Segraves W. A., Carlson J. R. The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development. 1999 Oct;126(20):4591–4602. doi: 10.1242/dev.126.20.4591. [DOI] [PubMed] [Google Scholar]
- Fristrom J. W. Development of the morphological mutant cryptocephal of Drosophila melanogaster. Genetics. 1965 Aug;52(2):297–318. doi: 10.1093/genetics/52.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelbart W. M., Crosby M., Matthews B., Rindone W. P., Chillemi J., Russo Twombly S., Emmert D., Ashburner M., Drysdale R. A., Whitfield E. FlyBase: a Drosophila database. The FlyBase consortium. Nucleic Acids Res. 1997 Jan 1;25(1):63–66. doi: 10.1093/nar/25.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gloor G. B., Preston C. R., Johnson-Schlitz D. M., Nassif N. A., Phillis R. W., Benz W. K., Robertson H. M., Engels W. R. Type I repressors of P element mobility. Genetics. 1993 Sep;135(1):81–95. doi: 10.1093/genetics/135.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halfon M. S., Kose H., Chiba A., Keshishian H. Targeted gene expression without a tissue-specific promoter: creating mosaic embryos using laser-induced single-cell heat shock. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6255–6260. doi: 10.1073/pnas.94.12.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang C., Baehrecke E. H., Thummel C. S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development. 1997 Nov;124(22):4673–4683. doi: 10.1242/dev.124.22.4673. [DOI] [PubMed] [Google Scholar]
- Kawai T., Matsumoto M., Takeda K., Sanjo H., Akira S. ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol. 1998 Mar;18(3):1642–1651. doi: 10.1128/mcb.18.3.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiss I., Beaton A. H., Tardiff J., Fristrom D., Fristrom J. W. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster. Genetics. 1988 Feb;118(2):247–259. doi: 10.1093/genetics/118.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam G., Hall B. L., Bender M., Thummel C. S. DHR3 is required for the prepupal-pupal transition and differentiation of adult structures during Drosophila metamorphosis. Dev Biol. 1999 Aug 1;212(1):204–216. doi: 10.1006/dbio.1999.9343. [DOI] [PubMed] [Google Scholar]
- Mielnicki L. M., Hughes R. G., Chevray P. M., Pruitt S. C. Mutated Atf4 suppresses c-Ha-ras oncogene transcript levels and cellular transformation in NIH3T3 fibroblasts. Biochem Biophys Res Commun. 1996 Nov 12;228(2):586–595. doi: 10.1006/bbrc.1996.1702. [DOI] [PubMed] [Google Scholar]
- O'Brien M. A., Roberts M. S., Taghert P. H. A genetic and molecular analysis of the 46C chromosomal region surrounding the FMRFamide neuropeptide gene in Drosophila melanogaster. Genetics. 1994 May;137(1):121–137. doi: 10.1093/genetics/137.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien M. A., Taghert P. H. A peritracheal neuropeptide system in insects: release of myomodulin-like peptides at ecdysis. J Exp Biol. 1998 Jan;201(Pt 2):193–209. doi: 10.1242/jeb.201.2.193. [DOI] [PubMed] [Google Scholar]
- Preston C. R., Sved J. A., Engels W. R. Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics. 1996 Dec;144(4):1623–1638. doi: 10.1093/genetics/144.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
- Schubiger M., Wade A. A., Carney G. E., Truman J. W., Bender M. Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis. Development. 1998 Jun;125(11):2053–2062. doi: 10.1242/dev.125.11.2053. [DOI] [PubMed] [Google Scholar]
- Segraves W. A., Hogness D. S. The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev. 1990 Feb;4(2):204–219. doi: 10.1101/gad.4.2.204. [DOI] [PubMed] [Google Scholar]
- Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sved J. A., Eggleston W. B., Engels W. R. Germ-line and somatic recombination induced by in vitro modified P elements in Drosophila melanogaster. Genetics. 1990 Feb;124(2):331–337. doi: 10.1093/genetics/124.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Truman J. W., Talbot W. S., Fahrbach S. E., Hogness D. S. Ecdysone receptor expression in the CNS correlates with stage-specific responses to ecdysteroids during Drosophila and Manduca development. Development. 1994 Jan;120(1):219–234. doi: 10.1242/dev.120.1.219. [DOI] [PubMed] [Google Scholar]
- Urness L. D., Thummel C. S. Molecular analysis of a steroid-induced regulatory hierarchy: the Drosophila E74A protein directly regulates L71-6 transcription. EMBO J. 1995 Dec 15;14(24):6239–6246. doi: 10.1002/j.1460-2075.1995.tb00314.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vinson C. R., Hai T., Boyd S. M. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev. 1993 Jun;7(6):1047–1058. doi: 10.1101/gad.7.6.1047. [DOI] [PubMed] [Google Scholar]
- Waeber G., Meyer T. E., LeSieur M., Hermann H. L., Gérard N., Habener J. F. Developmental stage-specific expression of cyclic adenosine 3',5'-monophosphate response element-binding protein CREB during spermatogenesis involves alternative exon splicing. Mol Endocrinol. 1991 Oct;5(10):1418–1430. doi: 10.1210/mend-5-10-1418. [DOI] [PubMed] [Google Scholar]
- Wright T. R., Hodgetts R. B., Sherald A. F. The genetics of dopa decarboxylase in Drosophila melanogaster. I. Isolation and characterization of deficiencies that delete the dopa-decarboxylase-dosage-sensitive region and the alpha-methyl-dopa-hypersensitive locus. Genetics. 1976 Oct;84(2):267–285. doi: 10.1093/genetics/84.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]