Skip to main content
Genetics logoLink to Genetics
. 2000 Aug;155(4):1657–1665. doi: 10.1093/genetics/155.4.1657

The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast.

M J Ireland 1, S S Reinke 1, D M Livingston 1
PMCID: PMC1461208  PMID: 10924464

Abstract

We have examined the stability of long tracts of CAG repeats in yeast mutants defective in enzymes suspected to be involved in lagging strand replication. Alleles of DNA ligase (cdc9-1 and cdc9-2) destabilize CAG tracts in the stable tract orientation, i.e., when CAG serves as the lagging strand template. In this orientation nearly two-thirds of the events recorded in the cdc9-1 mutant were tract expansions. While neither DNA ligase allele significantly increases the frequency of tract-length changes in the unstable orientation, the cdc9-1 mutant produced a significant number of expansions in tracts of this orientation. A mutation in primase (pri2-1) destabilizes tracts in both the stable and the unstable orientations. Mutations in a DNA helicase/deoxyribonuclease (dna2-1) or in two RNase H activities (rnh1Delta and rnh35Delta) do not have a significant effect on CAG repeat tract stability. We interpret our results in terms of the steps of replication that are likely to lead to expansion and to contraction of CAG repeat tracts.

Full Text

The Full Text of this article is available as a PDF (140.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bae S. H., Choi E., Lee K. H., Park J. S., Lee S. H., Seo Y. S. Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J Biol Chem. 1998 Oct 9;273(41):26880–26890. doi: 10.1074/jbc.273.41.26880. [DOI] [PubMed] [Google Scholar]
  2. Bambara R. A., Murante R. S., Henricksen L. A. Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem. 1997 Feb 21;272(8):4647–4650. doi: 10.1074/jbc.272.8.4647. [DOI] [PubMed] [Google Scholar]
  3. Budd M. E., Campbell J. L. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol. 1997 Apr;17(4):2136–2142. doi: 10.1128/mcb.17.4.2136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Budd M. E., Choe W. C., Campbell J. L. DNA2 encodes a DNA helicase essential for replication of eukaryotic chromosomes. J Biol Chem. 1995 Nov 10;270(45):26766–26769. doi: 10.1074/jbc.270.45.26766. [DOI] [PubMed] [Google Scholar]
  5. Budd M. E., Wittrup K. D., Bailey J. E., Campbell J. L. DNA polymerase I is required for premeiotic DNA replication and sporulation but not for X-ray repair in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Feb;9(2):365–376. doi: 10.1128/mcb.9.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dornfeld K. J., Livingston D. M. Effects of controlled RAD52 expression on repair and recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Apr;11(4):2013–2017. doi: 10.1128/mcb.11.4.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Francesconi S., Longhese M. P., Piseri A., Santocanale C., Lucchini G., Plevani P. Mutations in conserved yeast DNA primase domains impair DNA replication in vivo. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3877–3881. doi: 10.1073/pnas.88.9.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frank P., Braunshofer-Reiter C., Karwan A., Grimm R., Wintersberger U. Purification of Saccharomyces cerevisiae RNase H(70) and identification of the corresponding gene. FEBS Lett. 1999 May 7;450(3):251–256. doi: 10.1016/s0014-5793(99)00512-8. [DOI] [PubMed] [Google Scholar]
  9. Frank P., Braunshofer-Reiter C., Wintersberger U. Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII. FEBS Lett. 1998 Jan 2;421(1):23–26. doi: 10.1016/s0014-5793(97)01528-7. [DOI] [PubMed] [Google Scholar]
  10. Freudenreich C. H., Kantrow S. M., Zakian V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998 Feb 6;279(5352):853–856. doi: 10.1126/science.279.5352.853. [DOI] [PubMed] [Google Scholar]
  11. Freudenreich C. H., Stavenhagen J. B., Zakian V. A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol. 1997 Apr;17(4):2090–2098. doi: 10.1128/mcb.17.4.2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gordenin D. A., Kunkel T. A., Resnick M. A. Repeat expansion--all in a flap? Nat Genet. 1997 Jun;16(2):116–118. doi: 10.1038/ng0697-116. [DOI] [PubMed] [Google Scholar]
  13. Hartwell L. H., Mortimer R. K., Culotti J., Culotti M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973 Jun;74(2):267–286. doi: 10.1093/genetics/74.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itaya M., McKelvin D., Chatterjie S. K., Crouch R. J. Selective cloning of genes encoding RNase H from Salmonella typhimurium, Saccharomyces cerevisiae and Escherichia coli rnh mutant. Mol Gen Genet. 1991 Jul;227(3):438–445. doi: 10.1007/BF00273935. [DOI] [PubMed] [Google Scholar]
  15. Johnston L. H., Nasmyth K. A. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature. 1978 Aug 31;274(5674):891–893. doi: 10.1038/274891a0. [DOI] [PubMed] [Google Scholar]
  16. Jónsson Z. O., Hindges R., Hübscher U. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 1998 Apr 15;17(8):2412–2425. doi: 10.1093/emboj/17.8.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kunkel T. A., Resnick M. A., Gordenin D. A. Mutator specificity and disease: looking over the FENce. Cell. 1997 Jan 24;88(2):155–158. doi: 10.1016/s0092-8674(00)81832-2. [DOI] [PubMed] [Google Scholar]
  18. Levin D. S., Bai W., Yao N., O'Donnell M., Tomkinson A. E. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12863–12868. doi: 10.1073/pnas.94.24.12863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lucchini G., Mazza C., Scacheri E., Plevani P. Genetic mapping of the Saccharomyces cerevisiae DNA polymerase I gene and characterization of a pol1 temperature-sensitive mutant altered in DNA primase-polymerase complex stability. Mol Gen Genet. 1988 Jun;212(3):459–465. doi: 10.1007/BF00330850. [DOI] [PubMed] [Google Scholar]
  20. Manivasakam P., Weber S. C., McElver J., Schiestl R. H. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res. 1995 Jul 25;23(14):2799–2800. doi: 10.1093/nar/23.14.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maurer D. J., O'Callaghan B. L., Livingston D. M. Mapping the polarity of changes that occur in interrupted CAG repeat tracts in yeast. Mol Cell Biol. 1998 Aug;18(8):4597–4604. doi: 10.1128/mcb.18.8.4597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maurer D. J., O'Callaghan B. L., Livingston D. M. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Dec;16(12):6617–6622. doi: 10.1128/mcb.16.12.6617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miret J. J., Pessoa-Brandão L., Lahue R. S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12438–12443. doi: 10.1073/pnas.95.21.12438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Montelone B. A., Prakash S., Prakash L. Spontaneous mitotic recombination in mms8-1, an allele of the CDC9 gene of Saccharomyces cerevisiae. J Bacteriol. 1981 Aug;147(2):517–525. doi: 10.1128/jb.147.2.517-525.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Paulson H. L., Fischbeck K. H. Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci. 1996;19:79–107. doi: 10.1146/annurev.ne.19.030196.000455. [DOI] [PubMed] [Google Scholar]
  26. Prakash S., Sung P., Prakash L. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu Rev Genet. 1993;27:33–70. doi: 10.1146/annurev.ge.27.120193.000341. [DOI] [PubMed] [Google Scholar]
  27. Reagan M. S., Pittenger C., Siede W., Friedberg E. C. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol. 1995 Jan;177(2):364–371. doi: 10.1128/jb.177.2.364-371.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  29. Scherer S., Davis R. W. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4951–4955. doi: 10.1073/pnas.76.10.4951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schweitzer J. K., Livingston D. M. Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum Mol Genet. 1997 Mar;6(3):349–355. doi: 10.1093/hmg/6.3.349. [DOI] [PubMed] [Google Scholar]
  31. Schweitzer J. K., Livingston D. M. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum Mol Genet. 1998 Jan;7(1):69–74. doi: 10.1093/hmg/7.1.69. [DOI] [PubMed] [Google Scholar]
  32. Schweitzer J. K., Livingston D. M. The effect of DNA replication mutations on CAG tract stability in yeast. Genetics. 1999 Jul;152(3):953–963. doi: 10.1093/genetics/152.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spiro C., Pelletier R., Rolfsmeier M. L., Dixon M. J., Lahue R. S., Gupta G., Park M. S., Chen X., Mariappan S. V., McMurray C. T. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol Cell. 1999 Dec;4(6):1079–1085. doi: 10.1016/s1097-2765(00)80236-1. [DOI] [PubMed] [Google Scholar]
  34. Stotz A., Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990 Oct 30;95(1):91–98. doi: 10.1016/0378-1119(90)90418-q. [DOI] [PubMed] [Google Scholar]
  35. Tishkoff D. X., Filosi N., Gaida G. M., Kolodner R. D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell. 1997 Jan 24;88(2):253–263. doi: 10.1016/s0092-8674(00)81846-2. [DOI] [PubMed] [Google Scholar]
  36. Unternährer S., Hinnen A. Temperature sensitivity of the cdc9-1 allele of Saccharomyces cerevisiae DNA ligase is dependent on specific combinations of amino acids in the primary structure of the expressed protein. Mol Gen Genet. 1992 Mar;232(2):332–334. doi: 10.1007/BF00280014. [DOI] [PubMed] [Google Scholar]
  37. Waga S., Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 1998;67:721–751. doi: 10.1146/annurev.biochem.67.1.721. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES