Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Sep 15;24(18):3552–3559. doi: 10.1093/nar/24.18.3552

Gene encoding human Ro-associated autoantigen Y5 RNA.

R Maraia 1, A L Sakulich 1, E Brinkmann 1, E D Green 1
PMCID: PMC146121  PMID: 8836182

Abstract

Ro ribonucleoproteins are composed of Y RNAs and the Ro 60 kDa protein. While the Ro 60 kDa protein is implicated in an RNA discard pathway that recognizes 3'-extended 5S rRNAs, the function of Y RNAs remains unknown [O'Brien,C.A. and Wolin,S.L. (1995) Genes Dev. 8,2891-2903]. Y5 RNA occupies a large fraction of Ro 60 kDa protein in human Ro RNPs, contains an atypical 3'-extension not found on other Y RNAs, and constitutes an RNA antigen in certain autoimmune patients [Boulanger et al. (1995) Clin. Exp. Immunol. 99, 29-36]. An overabundance of Y RNA retroposed pseudogenes has previously complicated the isolation of mammalian Y RNA genes. The source gene for Y5 RNA was isolated from human DNA as well as from Galago senegalis DNA. Authenticity of the hY5 RNA gene was demonstrated in vivo and its activity was compared with the hY4 RNA gene that also uses a type 3 promoter for RNA polymerase III. The hY5 RNA gene was subsequently found to reside within a few hundred thousand base pairs of other Y RNA genes and the linear order of the four human Y RNA genes on chromosome 7q36 was determined. Phylogenetic comparative analyses of promoter and RNA structure indicate that the Y5 RNA gene has been subjected to positive selection during primate evolution. Consistent with the proposal of O'Brien and Harley [O'Brian,C.A. and Wolin,S.L. (1992) Gene 116, 285-289], analysis of flanking sequences suggest that the hY5 RNA gene may have originated as a retroposon.

Full Text

The Full Text of this article is available as a PDF (144.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcot S. S., Wang Z., Weber J. L., Deininger P. L., Batzer M. A. Alu repeats: a source for the genesis of primate microsatellites. Genomics. 1995 Sep 1;29(1):136–144. doi: 10.1006/geno.1995.1224. [DOI] [PubMed] [Google Scholar]
  2. Bailey W. J., Fitch D. H., Tagle D. A., Czelusniak J., Slightom J. L., Goodman M. Molecular evolution of the psi eta-globin gene locus: gibbon phylogeny and the hominoid slowdown. Mol Biol Evol. 1991 Mar;8(2):155–184. doi: 10.1093/oxfordjournals.molbev.a040641. [DOI] [PubMed] [Google Scholar]
  3. Batzer M. A., Rubin C. M., Hellmann-Blumberg U., Alegria-Hartman M., Leeflang E. P., Stern J. D., Bazan H. A., Shaikh T. H., Deininger P. L., Schmid C. W. Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol. 1995 Mar 31;247(3):418–427. doi: 10.1006/jmbi.1994.0150. [DOI] [PubMed] [Google Scholar]
  4. Boire G., Craft J. Human Ro ribonucleoprotein particles: characterization of native structure and stable association with the La polypeptide. J Clin Invest. 1990 Apr;85(4):1182–1190. doi: 10.1172/JCI114551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boire G., Gendron M., Monast N., Bastin B., Ménard H. A. Purification of antigenically intact Ro ribonucleoproteins; biochemical and immunological evidence that the 52-kD protein is not a Ro protein. Clin Exp Immunol. 1995 Jun;100(3):489–498. doi: 10.1111/j.1365-2249.1995.tb03728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boulanger C., Chabot B., Ménard H. A., Boire G. Autoantibodies in human anti-Ro sera specifically recognize deproteinized hY5 Ro RNA. Clin Exp Immunol. 1995 Jan;99(1):29–36. doi: 10.1111/j.1365-2249.1995.tb03468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang D. Y., Sasaki-Tozawa N., Green L. K., Maraia R. J. A trinucleotide repeat-associated increase in the level of Alu RNA-binding protein occurred during the same period as the major Alu amplification that accompanied anthropoid evolution. Mol Cell Biol. 1995 Apr;15(4):2109–2116. doi: 10.1128/mcb.15.4.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crouch D., Liebke E. H. The molecular cloning of a mouse Ro RNA, my1-like sequence. Nucleic Acids Res. 1989 Jun 26;17(12):4890–4890. doi: 10.1093/nar/17.12.4890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daniels G. R., Deininger P. L. Integration site preferences of the Alu family and similar repetitive DNA sequences. Nucleic Acids Res. 1985 Dec 20;13(24):8939–8954. doi: 10.1093/nar/13.24.8939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farris A. D., O'Brien C. A., Harley J. B. Y3 is the most conserved small RNA component of Ro ribonucleoprotein complexes in vertebrate species. Gene. 1995 Mar 10;154(2):193–198. doi: 10.1016/0378-1119(94)00823-b. [DOI] [PubMed] [Google Scholar]
  11. Gottlieb E., Steitz J. A. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J. 1989 Mar;8(3):851–861. doi: 10.1002/j.1460-2075.1989.tb03446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gottlieb E., Steitz J. A. The RNA binding protein La influences both the accuracy and the efficiency of RNA polymerase III transcription in vitro. EMBO J. 1989 Mar;8(3):841–850. doi: 10.1002/j.1460-2075.1989.tb03445.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Green E. D., Braden V. V., Fulton R. S., Lim R., Ueltzen M. S., Peluso D. C., Mohr-Tidwell R. M., Idol J. R., Smith L. M., Chumakov I. A human chromosome 7 yeast artificial chromosome (YAC) resource: construction, characterization, and screening. Genomics. 1995 Jan 1;25(1):170–183. doi: 10.1016/0888-7543(95)80123-4. [DOI] [PubMed] [Google Scholar]
  14. Green E. D., Idol J. R., Mohr-Tidwell R. M., Braden V. V., Peluso D. C., Fulton R. S., Massa H. F., Magness C. L., Wilson A. M., Kimura J. Integration of physical, genetic and cytogenetic maps of human chromosome 7: isolation and analysis of yeast artificial chromosome clones for 117 mapped genetic markers. Hum Mol Genet. 1994 Mar;3(3):489–501. doi: 10.1093/hmg/3.3.489. [DOI] [PubMed] [Google Scholar]
  15. Green E. D., Olson M. V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1213–1217. doi: 10.1073/pnas.87.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haynes S. R., Toomey T. P., Leinwand L., Jelinek W. R. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element. Mol Cell Biol. 1981 Jul;1(7):573–583. doi: 10.1128/mcb.1.7.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hendrick J. P., Wolin S. L., Rinke J., Lerner M. R., Steitz J. A. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol. 1981 Dec;1(12):1138–1149. doi: 10.1128/mcb.1.12.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henry R. W., Sadowski C. L., Kobayashi R., Hernandez N. A TBP-TAF complex required for transcription of human snRNA genes by RNA polymerase II and III. Nature. 1995 Apr 13;374(6523):653–656. doi: 10.1038/374653a0. [DOI] [PubMed] [Google Scholar]
  19. Itoh Y., Kriet J. D., Reichlin M. Organ distribution of the Ro (SS-A) antigen in the guinea pig. Arthritis Rheum. 1990 Dec;33(12):1815–1821. doi: 10.1002/art.1780331209. [DOI] [PubMed] [Google Scholar]
  20. Jelinek W. R., Schmid C. W. Repetitive sequences in eukaryotic DNA and their expression. Annu Rev Biochem. 1982;51:813–844. doi: 10.1146/annurev.bi.51.070182.004121. [DOI] [PubMed] [Google Scholar]
  21. Jurka J., Smith T. F., Labuda D. Small cytoplasmic Ro RNA pseudogene and an Alu repeat in the human alpha-1 globin gene. Nucleic Acids Res. 1988 Jan 25;16(2):766–766. doi: 10.1093/nar/16.2.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kato N., Hoshino H., Harada F. Nucleotide sequence of 4.5S RNA (C8 or hY5) from HeLa cells. Biochem Biophys Res Commun. 1982 Sep 16;108(1):363–370. doi: 10.1016/0006-291x(82)91875-7. [DOI] [PubMed] [Google Scholar]
  23. Kelekar A., Keene J. D. Downregulation of RNA polymerase III transcription of the hY3 gene in vitro. Mol Biol Rep. 1990;14(2-3):173–174. doi: 10.1007/BF00360463. [DOI] [PubMed] [Google Scholar]
  24. Kelekar A., Saitta M. R., Keene J. D. Molecular composition of Ro small ribonucleoprotein complexes in human cells. Intracellular localization of the 60- and 52-kD proteins. J Clin Invest. 1994 Apr;93(4):1637–1644. doi: 10.1172/JCI117145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kieber-Emmons T., Kohler H. Evolutionary origin of autoreactive determinants (autogens). Proc Natl Acad Sci U S A. 1986 Apr;83(8):2521–2525. doi: 10.1073/pnas.83.8.2521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lerner M. R., Boyle J. A., Hardin J. A., Steitz J. A. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science. 1981 Jan 23;211(4480):400–402. doi: 10.1126/science.6164096. [DOI] [PubMed] [Google Scholar]
  27. Lerner M. R., Steitz J. A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5495–5499. doi: 10.1073/pnas.76.11.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levis R. W., Ganesan R., Houtchens K., Tolar L. A., Sheen F. M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993 Dec 17;75(6):1083–1093. doi: 10.1016/0092-8674(93)90318-k. [DOI] [PubMed] [Google Scholar]
  29. Luan D. D., Korman M. H., Jakubczak J. L., Eickbush T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. doi: 10.1016/0092-8674(93)90078-5. [DOI] [PubMed] [Google Scholar]
  30. Maraia R. J., Kenan D. J., Keene J. D. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol. 1994 Mar;14(3):2147–2158. doi: 10.1128/mcb.14.3.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Maraia R. J., Sasaki-Tozawa N., Driscoll C. T., Green E. D., Darlington G. J. The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res. 1994 Aug 11;22(15):3045–3052. doi: 10.1093/nar/22.15.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maraia R. J. Transcription termination factor La is also an initiation factor for RNA polymerase III. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3383–3387. doi: 10.1073/pnas.93.8.3383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Matera A. G., Frey M. R., Margelot K., Wolin S. L. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol. 1995 Jun;129(5):1181–1193. doi: 10.1083/jcb.129.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Brien C. A., Harley J. B. A subset of hY RNAs is associated with erythrocyte Ro ribonucleoproteins. EMBO J. 1990 Nov;9(11):3683–3689. doi: 10.1002/j.1460-2075.1990.tb07580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. O'Brien C. A., Harley J. B. Association of hY4 pseudogenes with Alu repeats and abundance of hY RNA-like sequences in the human genome. Gene. 1992 Jul 15;116(2):285–289. doi: 10.1016/0378-1119(92)90527-v. [DOI] [PubMed] [Google Scholar]
  36. O'Brien C. A., Margelot K., Wolin S. L. Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7250–7254. doi: 10.1073/pnas.90.15.7250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. O'Brien C. A., Wolin S. L. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 1994 Dec 1;8(23):2891–2903. doi: 10.1101/gad.8.23.2891. [DOI] [PubMed] [Google Scholar]
  38. Pruijn G. J., Slobbe R. L., van Venrooij W. J. Analysis of protein--RNA interactions within Ro ribonucleoprotein complexes. Nucleic Acids Res. 1991 Oct 11;19(19):5173–5180. doi: 10.1093/nar/19.19.5173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pruijn G. J., Wingens P. A., Peters S. L., Thijssen J. P., van Venrooij W. J. Ro RNP associated Y RNAs are highly conserved among mammals. Biochim Biophys Acta. 1993 Dec 14;1216(3):395–401. doi: 10.1016/0167-4781(93)90006-y. [DOI] [PubMed] [Google Scholar]
  40. Rinke J., Steitz J. A. Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La lupus antibodies. Cell. 1982 May;29(1):149–159. doi: 10.1016/0092-8674(82)90099-x. [DOI] [PubMed] [Google Scholar]
  41. Shen M. R., Batzer M. A., Deininger P. L. Evolution of the master Alu gene(s). J Mol Evol. 1991 Oct;33(4):311–320. doi: 10.1007/BF02102862. [DOI] [PubMed] [Google Scholar]
  42. Van Arsdell S. W., Weiner A. M. Pseudogenes for human U2 small nuclear RNA do not have a fixed site of 3' truncation. Nucleic Acids Res. 1984 Feb 10;12(3):1463–1471. doi: 10.1093/nar/12.3.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Van Horn D. J., Eisenberg D., O'Brien C. A., Wolin S. L. Caenorhabditis elegans embryos contain only one major species of Ro RNP. RNA. 1995 May;1(3):293–303. [PMC free article] [PubMed] [Google Scholar]
  44. Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]
  45. Wolin S. L., Steitz J. A. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell. 1983 Mar;32(3):735–744. doi: 10.1016/0092-8674(83)90059-4. [DOI] [PubMed] [Google Scholar]
  46. Wolin S. L., Steitz J. A. The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1996–2000. doi: 10.1073/pnas.81.7.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yoon J. B., Murphy S., Bai L., Wang Z., Roeder R. G. Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes. Mol Cell Biol. 1995 Apr;15(4):2019–2027. doi: 10.1128/mcb.15.4.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
  49. van Gelder C. W., Thijssen J. P., Klaassen E. C., Sturchler C., Krol A., van Venrooij W. J., Pruijn G. J. Common structural features of the Ro RNP associated hY1 and hY5 RNAs. Nucleic Acids Res. 1994 Jul 11;22(13):2498–2506. doi: 10.1093/nar/22.13.2498. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES