Abstract
Epigenetic regulatory mechanisms heritably alter patterns of gene expression without changes in DNA sequence. Epigenetic states are often correlated with developmentally imposed alterations in genomic DNA methylation and local chromatin structure. Pl-Blotched is a stable epigenetic allele of the maize anthocyanin regulatory gene, purple plant1(pl). Pl-Blotched plants display a variegated pattern of pigmentation that contrasts sharply with the uniformly dark purple pigmentation of plants carrying the dominant Pl-Rhoades allele. Previously, we showed that the lower level of pigmentation in Pl-Blotched is correlated with lower pl mRNA levels and increased DNA methylation at some sites. To explore how DNA methylation, chromatin structure, and developmental stage might contribute to the expression of Pl-Blotched, we used methylation-sensitive restriction enzymes and DNaseI sensitivity assays to compare the methylation status and chromatin structure of Pl-Blotched and Pl-Rhoades at different stages in development. Both alleles exhibit developmentally sensitive changes in methylation. In Pl-Blotched, methylation of two diagnostic HpaII/MspI sites increases progressively, coincident with the juvenile-to-adult transition in growth. In seedlings, the chromatin encompassing the coding region of the gene is less sensitive to DNaseI digestion in Pl-Blotched than in Pl-Rhoades. Developmental maturation from seedling to adult is accompanied by expansion of this closed chromatin domain to include the promoter and downstream flanking sequences. We provide evidence to show that chromatin structure, rather than DNA methylation, is the primary epigenetic determinant for the phenotypic differences between Pl-Blotched and Pl-Rhoades.
Full Text
The Full Text of this article is available as a PDF (452.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banks J. A., Masson P., Fedoroff N. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev. 1988 Nov;2(11):1364–1380. doi: 10.1101/gad.2.11.1364. [DOI] [PubMed] [Google Scholar]
- Bellard M., Dretzen G., Giangrande A., Ramain P. Nuclease digestion of transcriptionally active chromatin. Methods Enzymol. 1989;170:317–346. doi: 10.1016/0076-6879(89)70054-9. [DOI] [PubMed] [Google Scholar]
- Bird A. P., Wolffe A. P. Methylation-induced repression--belts, braces, and chromatin. Cell. 1999 Nov 24;99(5):451–454. doi: 10.1016/s0092-8674(00)81532-9. [DOI] [PubMed] [Google Scholar]
- Brutnell T. P., Dellaporta S. L. Somatic inactivation and reactivation of Ac associated with changes in cytosine methylation and transposase expression. Genetics. 1994 Sep;138(1):213–225. doi: 10.1093/genetics/138.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaudhuri S., Messing J. Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4867–4871. doi: 10.1073/pnas.91.11.4867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomet P. S., Wessler S., Dellaporta S. L. Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J. 1987 Feb;6(2):295–302. doi: 10.1002/j.1460-2075.1987.tb04753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cocciolone S. M., Cone K. C. Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics. 1993 Oct;135(2):575–588. doi: 10.1093/genetics/135.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cone K. C., Burr F. A., Burr B. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9631–9635. doi: 10.1073/pnas.83.24.9631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cone K. C., Cocciolone S. M., Burr F. A., Burr B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell. 1993 Dec;5(12):1795–1805. doi: 10.1105/tpc.5.12.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cone K. C., Cocciolone S. M., Moehlenkamp C. A., Weber T., Drummond B. J., Tagliani L. A., Bowen B. A., Perrot G. H. Role of the regulatory gene pl in the photocontrol of maize anthocyanin pigmentation. Plant Cell. 1993 Dec;5(12):1807–1816. doi: 10.1105/tpc.5.12.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das O. P., Messing J. Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics. 1994 Mar;136(3):1121–1141. doi: 10.1093/genetics/136.3.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eden S., Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994 Apr;4(2):255–259. doi: 10.1016/s0959-437x(05)80052-8. [DOI] [PubMed] [Google Scholar]
- Felsenfeld G. Chromatin as an essential part of the transcriptional mechanism. Nature. 1992 Jan 16;355(6357):219–224. doi: 10.1038/355219a0. [DOI] [PubMed] [Google Scholar]
- Finnegan E. J., Genger R. K., Peacock W. J., Dennis E. S. DNA METHYLATION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):223–247. doi: 10.1146/annurev.arplant.49.1.223. [DOI] [PubMed] [Google Scholar]
- Finnegan E. J., Peacock W. J., Dennis E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8449–8454. doi: 10.1073/pnas.93.16.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S., Matzke M. A. Exploring and explaining epigenetic effects. Trends Genet. 1997 Aug;13(8):293–295. doi: 10.1016/s0168-9525(97)01219-5. [DOI] [PubMed] [Google Scholar]
- Hollick J. B., Dorweiler J. E., Chandler V. L. Paramutation and related allelic interactions. Trends Genet. 1997 Aug;13(8):302–308. doi: 10.1016/s0168-9525(97)01184-0. [DOI] [PubMed] [Google Scholar]
- Holliday R. The inheritance of epigenetic defects. Science. 1987 Oct 9;238(4824):163–170. doi: 10.1126/science.3310230. [DOI] [PubMed] [Google Scholar]
- Jacobsen S. E., Meyerowitz E. M. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science. 1997 Aug 22;277(5329):1100–1103. doi: 10.1126/science.277.5329.1100. [DOI] [PubMed] [Google Scholar]
- Jeddeloh J. A., Stokes T. L., Richards E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet. 1999 May;22(1):94–97. doi: 10.1038/8803. [DOI] [PubMed] [Google Scholar]
- Kakutani T., Jeddeloh J. A., Flowers S. K., Munakata K., Richards E. J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12406–12411. doi: 10.1073/pnas.93.22.12406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakutani T., Munakata K., Richards E. J., Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics. 1999 Feb;151(2):831–838. doi: 10.1093/genetics/151.2.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kermicle J. L., Alleman M. Gametic imprinting in maize in relation to the angiosperm life cycle. Dev Suppl. 1990:9–14. [PubMed] [Google Scholar]
- Kooter JM, Matzke MA, Meyer P. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci. 1999 Sep;4(9):340–347. doi: 10.1016/s1360-1385(99)01467-3. [DOI] [PubMed] [Google Scholar]
- Martienssen R. A., Richards E. J. DNA methylation in eukaryotes. Curr Opin Genet Dev. 1995 Apr;5(2):234–242. doi: 10.1016/0959-437x(95)80014-x. [DOI] [PubMed] [Google Scholar]
- Martienssen R., Barkan A., Taylor W. C., Freeling M. Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev. 1990 Mar;4(3):331–343. doi: 10.1101/gad.4.3.331. [DOI] [PubMed] [Google Scholar]
- Martienssen R., Baron A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics. 1994 Mar;136(3):1157–1170. doi: 10.1093/genetics/136.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norris D. P., Patel D., Kay G. F., Penny G. D., Brockdorff N., Sheardown S. A., Rastan S. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell. 1994 Apr 8;77(1):41–51. doi: 10.1016/0092-8674(94)90233-x. [DOI] [PubMed] [Google Scholar]
- Ronemus M. J., Galbiati M., Ticknor C., Chen J., Dellaporta S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science. 1996 Aug 2;273(5275):654–657. doi: 10.1126/science.273.5275.654. [DOI] [PubMed] [Google Scholar]
- Vongs A., Kakutani T., Martienssen R. A., Richards E. J. Arabidopsis thaliana DNA methylation mutants. Science. 1993 Jun 25;260(5116):1926–1928. doi: 10.1126/science.8316832. [DOI] [PubMed] [Google Scholar]