Abstract
The protein toxins produced by Bacillus thuringiensis (Bt) are the most widely used natural insecticides in agriculture. Despite successful and extensive use of these toxins in transgenic crops, little is known about toxicity and resistance pathways in target insects since these organisms are not ideal for molecular genetic studies. To address this limitation and to investigate the potential use of these toxins to control parasitic nematodes, we are studying Bt toxin action and resistance in Caenorhabditis elegans. We demonstrate for the first time that a single Bt toxin can target a nematode. When fed Bt toxin, C. elegans hermaphrodites undergo extensive damage to the gut, a decrease in fertility, and death, consistent with toxin effects in insects. We have screened for and isolated 10 recessive mutants that resist the toxin's effects on the intestine, on fertility, and on viability. These mutants define five genes, indicating that more components are required for Bt toxicity than previously known. We find that a second, unrelated nematicidal Bt toxin may utilize a different toxicity pathway. Our data indicate that C. elegans can be used to undertake detailed molecular genetic analysis of Bt toxin pathways and that Bt toxins hold promise as nematicides.
Full Text
The Full Text of this article is available as a PDF (196.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borgonie G., Van Driessche R., Leyns F., Arnaut G., De Waele D., Coomans A. Germination of Bacillus thuringiensis spores in bacteriophagous nematodes (Nematoda: Rhabditida). J Invertebr Pathol. 1995 Jan;65(1):61–67. doi: 10.1006/jipa.1995.1008. [DOI] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crickmore N., Zeigler D. R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D. H. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998 Sep;62(3):807–813. doi: 10.1128/mmbr.62.3.807-813.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ge A. Z., Pfister R. M., Dean D. H. Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. Gene. 1990 Sep 1;93(1):49–54. doi: 10.1016/0378-1119(90)90134-d. [DOI] [PubMed] [Google Scholar]
- Gill S. S., Cowles E. A., Pietrantonio P. V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol. 1992;37:615–636. doi: 10.1146/annurev.en.37.010192.003151. [DOI] [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight P. J., Crickmore N., Ellar D. J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol. 1994 Feb;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meadows J., Gill S. S., Bone L. W. Factors influencing lethality of Bacillus thuringiensis kurstaki toxin for eggs and larvae of Trichostrongylus colubriformis (Nematoda). J Parasitol. 1989 Apr;75(2):191–194. [PubMed] [Google Scholar]
- Oppert B., Kramer K. J., Beeman R. W., Johnson D., McGaughey W. H. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem. 1997 Sep 19;272(38):23473–23476. doi: 10.1074/jbc.272.38.23473. [DOI] [PubMed] [Google Scholar]
- Sangadala S., Walters F. S., English L. H., Adang M. J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J Biol Chem. 1994 Apr 1;269(13):10088–10092. [PubMed] [Google Scholar]
- Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998 Sep;62(3):775–806. doi: 10.1128/mmbr.62.3.775-806.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Liu Y. B., Finson N., Masson L., Heckel D. G. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1640–1644. doi: 10.1073/pnas.94.5.1640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vadlamudi R. K., Weber E., Ji I., Ji T. H., Bulla L. A., Jr Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem. 1995 Mar 10;270(10):5490–5494. doi: 10.1074/jbc.270.10.5490. [DOI] [PubMed] [Google Scholar]