Abstract
Retrotransposon or retrotransposon-like sequences have been reported to be conserved components of cereal centromeres. Here we show that the published sequences are derived from a single conventional Ty3-gypsy family or a nonautonomous derivative. Both autonomous and nonautonomous elements are likely to have colonized Poaceae centromeres at the time of a common ancestor but have been maintained since by active retrotransposition. The retrotransposon family is also present at a lower copy number in the Arabidopsis genome, where it shows less pronounced localization. The history of the family in the two types of genome provides an interesting contrast between "boom and bust" and persistent evolutionary patterns.
Full Text
The Full Text of this article is available as a PDF (577.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbo S., Dunford R. P., Foote T. N., Reader S. M., Flavell R. B., Moore G. Organization of retro-element and stem-loop repeat families in the genomes and nuclei of cereals. Chromosome Res. 1995 Jan;3(1):5–15. doi: 10.1007/BF00711156. [DOI] [PubMed] [Google Scholar]
- Ananiev E. V., Phillips R. L., Rines H. W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13073–13078. doi: 10.1073/pnas.95.22.13073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aragón-Alcaide L., Miller T., Schwarzacher T., Reader S., Moore G. A cereal centromeric sequence. Chromosoma. 1996 Dec;105(5):261–268. doi: 10.1007/BF02524643. [DOI] [PubMed] [Google Scholar]
- Avedisov S. N., Zelentsova E. S., Il'in Iu V. Trans-mobilizatsiia deletirovannykh kopii retrotranspozona MDG3 v kul'tiviruemykh kletkakh drozofily. Genetika. 1998 Mar;34(3):335–342. [PubMed] [Google Scholar]
- Bennetzen J. L., Freeling M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 1993 Aug;9(8):259–261. doi: 10.1016/0168-9525(93)90001-x. [DOI] [PubMed] [Google Scholar]
- Bennetzen J. L., Freeling M. The unified grass genome: synergy in synteny. Genome Res. 1997 Apr;7(4):301–306. doi: 10.1101/gr.7.4.301. [DOI] [PubMed] [Google Scholar]
- Bennetzen J. L., Kellogg E. A. Do Plants Have a One-Way Ticket to Genomic Obesity? Plant Cell. 1997 Sep;9(9):1509–1514. doi: 10.1105/tpc.9.9.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennetzen J. L., SanMiguel P., Chen M., Tikhonov A., Francki M., Avramova Z. Grass genomes. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1975–1978. doi: 10.1073/pnas.95.5.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeke J. D., Devine S. E. Yeast retrotransposons: finding a nice quiet neighborhood. Cell. 1998 Jun 26;93(7):1087–1089. doi: 10.1016/s0092-8674(00)81450-6. [DOI] [PubMed] [Google Scholar]
- Dong F., Miller J. T., Jackson S. A., Wang G. L., Ronald P. C., Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8135–8140. doi: 10.1073/pnas.95.14.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eickbush D. G., Eickbush T. H. Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics. 1995 Feb;139(2):671–684. doi: 10.1093/genetics/139.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eickbush D. G., Lathe W. C., 3rd, Francino M. P., Eickbush T. H. R1 and R2 retrotransposable elements of Drosophila evolve at rates similar to those of nuclear genes. Genetics. 1995 Feb;139(2):685–695. doi: 10.1093/genetics/139.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eickbush T. H., Burke W. D., Eickbush D. G., Lathe W. C., 3rd Evolution of R1 and R2 in the rDNA units of the genus Drosophila. Genetica. 1997;100(1-3):49–61. [PubMed] [Google Scholar]
- Gabriel A., Willems M., Mules E. H., Boeke J. D. Replication infidelity during a single cycle of Ty1 retrotransposition. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7767–7771. doi: 10.1073/pnas.93.15.7767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandbastien M. A. Retroelements in higher plants. Trends Genet. 1992 Mar;8(3):103–108. doi: 10.1016/0168-9525(92)90198-d. [DOI] [PubMed] [Google Scholar]
- Higashiyama T., Noutoshi Y., Fujie M., Yamada T. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J. 1997 Jun 16;16(12):3715–3723. doi: 10.1093/emboj/16.12.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakubczak J. L., Zenni M. K., Woodruff R. C., Eickbush T. H. Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics. 1992 May;131(1):129–142. doi: 10.1093/genetics/131.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang J., Nasuda S., Dong F., Scherrer C. W., Woo S. S., Wing R. A., Gill B. S., Ward D. C. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14210–14213. doi: 10.1073/pnas.93.24.14210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpen G. H., Allshire R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 1997 Dec;13(12):489–496. doi: 10.1016/s0168-9525(97)01298-5. [DOI] [PubMed] [Google Scholar]
- Kaszás E., Birchler J. A. Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics. 1998 Dec;150(4):1683–1692. doi: 10.1093/genetics/150.4.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langdon T., Seago C., Jones R. N., Ougham H., Thomas H., Forster J. W., Jenkins G. De novo evolution of satellite DNA on the rye B chromosome. Genetics. 2000 Feb;154(2):869–884. doi: 10.1093/genetics/154.2.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C., Wevrick R., Fisher R. B., Ferguson-Smith M. A., Lin C. C. Human centromeric DNAs. Hum Genet. 1997 Sep;100(3-4):291–304. doi: 10.1007/s004390050508. [DOI] [PubMed] [Google Scholar]
- Marillonnet S., Wessler S. R. Extreme structural heterogeneity among the members of a maize retrotransposon family. Genetics. 1998 Nov;150(3):1245–1256. doi: 10.1093/genetics/150.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore G., Aragón-Alcaide L., Roberts M., Reader S., Miller T., Foote T. Are rice chromosomes components of a holocentric chromosome ancestor? Plant Mol Biol. 1997 Sep;35(1-2):17–23. [PubMed] [Google Scholar]
- Nonomura K. I., Kurata N. Organization of the 1.9-kb repeat unit RCE1 in the centromeric region of rice chromosomes. Mol Gen Genet. 1999 Feb;261(1):1–10. doi: 10.1007/s004380050935. [DOI] [PubMed] [Google Scholar]
- Noutoshi Y., Ito Y., Kanetani S., Fujie M., Usami S., Yamada T. Molecular anatomy of a small chromosome in the green alga Chlorella vulgaris. Nucleic Acids Res. 1998 Sep 1;26(17):3900–3907. doi: 10.1093/nar/26.17.3900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neill R. J., O'Neill M. J., Graves J. A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998 May 7;393(6680):68–72. doi: 10.1038/29985. [DOI] [PubMed] [Google Scholar]
- Pardue M. L., Danilevskaya O. N., Lowenhaupt K., Slot F., Traverse K. L. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 1996 Feb;12(2):48–52. doi: 10.1016/0168-9525(96)81399-0. [DOI] [PubMed] [Google Scholar]
- Pearce S. R., Pich U., Harrison G., Flavell A. J., Heslop-Harrison J. S., Schubert I., Kumar A. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res. 1996 Aug;4(5):357–364. doi: 10.1007/BF02257271. [DOI] [PubMed] [Google Scholar]
- Presting G. G., Malysheva L., Fuchs J., Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998 Dec;16(6):721–728. doi: 10.1046/j.1365-313x.1998.00341.x. [DOI] [PubMed] [Google Scholar]
- Purugganan M. D., Wessler S. R. Molecular evolution of the plant R regulatory gene family. Genetics. 1994 Nov;138(3):849–854. doi: 10.1093/genetics/138.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pélissier T., Tutois S., Tourmente S., Deragon J. M., Picard G. DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica. 1996 Mar;97(2):141–151. doi: 10.1007/BF00054621. [DOI] [PubMed] [Google Scholar]
- SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y., Bennetzen J. L. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998 Sep;20(1):43–45. doi: 10.1038/1695. [DOI] [PubMed] [Google Scholar]
- Song S. U., Gerasimova T., Kurkulos M., Boeke J. D., Corces V. G. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 1994 Sep 1;8(17):2046–2057. doi: 10.1101/gad.8.17.2046. [DOI] [PubMed] [Google Scholar]
- Sun X., Wahlstrom J., Karpen G. Molecular structure of a functional Drosophila centromere. Cell. 1997 Dec 26;91(7):1007–1019. doi: 10.1016/s0092-8674(00)80491-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suoniemi A., Anamthawat-Jónsson K., Arna T., Schulman A. H. Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol. 1996 Mar;30(6):1321–1329. doi: 10.1007/BF00019563. [DOI] [PubMed] [Google Scholar]
- Suoniemi A., Narvanto A., Schulman A. H. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol. 1996 May;31(2):295–306. doi: 10.1007/BF00021791. [DOI] [PubMed] [Google Scholar]
- Suoniemi A., Schmidt D., Schulman A. H. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites. Genetica. 1997;100(1-3):219–230. [PubMed] [Google Scholar]
- Waugh R., McLean K., Flavell A. J., Pearce S. R., Kumar A., Thomas B. B., Powell W. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet. 1997 Feb 27;253(6):687–694. doi: 10.1007/s004380050372. [DOI] [PubMed] [Google Scholar]
- Wright D. A., Voytas D. F. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics. 1998 Jun;149(2):703–715. doi: 10.1093/genetics/149.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]