Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Genetics logoLink to Genetics
. 2000 Sep;156(1):143–154. doi: 10.1093/genetics/156.1.143

Properties of ethylmethane sulfonate-induced mutations affecting life-history traits in Caenorhabditis elegans and inferences about bivariate distributions of mutation effects.

P D Keightley 1, E K Davies 1, A D Peters 1, R G Shaw 1
PMCID: PMC1461248  PMID: 10978281

Abstract

The homozygous effects of ethylmethane sulfonate (EMS)-induced mutations in Caenorhabditis elegans are compared across life-history traits. Mutagenesis has a greater effect on early than late reproductive output, since EMS-induced mutations tend to cause delayed reproduction. Mutagenesis changes the mean and variance of longevity much less than reproductive output traits. Mutations that increase total or early productivity are not detected, but the net effect of mutations is to increase and decrease late productivity to approximately equal extents. Although most mutations decrease longevity, a mutant line with increased longevity was found. A flattening of mortality curves with age is noted, particularly in EMS lines. We infer that less than one-tenth of mutations that have fitness effects in natural conditions are detected in the laboratory, and such mutations have moderately large effects ( approximately 20% of the mean). Mutational correlations for life-history traits are strong and positive. Correlations between early or late productivity and longevity are of similar magnitude. We develop a maximum-likelihood procedure to infer bivariate distributions of mutation effects. We show that strong mutation-induced genetic correlations do not necessarily imply strong directional correlations between mutational effects, since correlation is also generated by lines carrying different numbers of mutations.

Full Text

The Full Text of this article is available as a PDF (371.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlesworth B., Charlesworth D. Some evolutionary consequences of deleterious mutations. Genetica. 1998;102-103(1-6):3–19. [PubMed] [Google Scholar]
  3. Charlesworth B. Evolutionary mechanisms of senescence. Genetica. 1993;91(1-3):11–19. doi: 10.1007/BF01435984. [DOI] [PubMed] [Google Scholar]
  4. Charlesworth B., Partridge L. Ageing: levelling of the grim reaper. Curr Biol. 1997 Jul 1;7(7):R440–R442. doi: 10.1016/s0960-9822(06)00213-2. [DOI] [PubMed] [Google Scholar]
  5. Davies E. K., Peters A. D., Keightley P. D. High frequency of cryptic deleterious mutations in Caenorhabditis elegans. Science. 1999 Sep 10;285(5434):1748–1751. doi: 10.1126/science.285.5434.1748. [DOI] [PubMed] [Google Scholar]
  6. Edney E. B., Gill R. W. Evolution of senescence and specific longevity. Nature. 1968 Oct 19;220(5164):281–282. doi: 10.1038/220281a0. [DOI] [PubMed] [Google Scholar]
  7. Fernández J., López-Fanjul C. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics. 1996 Jun;143(2):829–837. doi: 10.1093/genetics/143.2.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. García-Dorado A., López-Fanjul C., Caballero A. Properties of spontaneous mutations affecting quantitative traits. Genet Res. 1999 Dec;74(3):341–350. doi: 10.1017/s0016672399004206. [DOI] [PubMed] [Google Scholar]
  9. Hamilton W. D. The moulding of senescence by natural selection. J Theor Biol. 1966 Sep;12(1):12–45. doi: 10.1016/0022-5193(66)90184-6. [DOI] [PubMed] [Google Scholar]
  10. Houle D., Hughes K. A., Hoffmaster D. K., Ihara J., Assimacopoulos S., Canada D., Charlesworth B. The effects of spontaneous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics. 1994 Nov;138(3):773–785. doi: 10.1093/genetics/138.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hughes K. A., Charlesworth B. A genetic analysis of senescence in Drosophila. Nature. 1994 Jan 6;367(6458):64–66. doi: 10.1038/367064a0. [DOI] [PubMed] [Google Scholar]
  12. Johnson T. E., Hutchinson E. W. Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics. 1993 Jun;134(2):465–474. doi: 10.1093/genetics/134.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keightley P. D., Bataillon T. M. Multigeneration maximum-likelihood analysis applied to mutation-accumulation experiments in Caenorhabditis elegans. Genetics. 2000 Mar;154(3):1193–1201. doi: 10.1093/genetics/154.3.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keightley P. D., Caballero A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3823–3827. doi: 10.1073/pnas.94.8.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keightley P. D., Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. doi: 10.1093/genetics/153.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keightley P. D. Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics. 1998 Nov;150(3):1283–1293. doi: 10.1093/genetics/150.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keightley P. D., Ohnishi O. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics. 1998 Feb;148(2):753–766. doi: 10.1093/genetics/148.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z. B., Mackay T. F. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9734–9739. doi: 10.1073/pnas.94.18.9734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohnishi O. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics. 1977 Nov;87(3):529–545. doi: 10.1093/genetics/87.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pletcher S. D., Houle D., Curtsinger J. W. The evolution of age-specific mortality rates in Drosophila melanogaster: genetic divergence among unselected lines. Genetics. 1999 Oct;153(2):813–823. doi: 10.1093/genetics/153.2.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Promislow D. E., Tatar M., Khazaeli A. A., Curtsinger J. W. Age-specific patterns of genetic variance in Drosophila melanogaster. I. Mortality. Genetics. 1996 Jun;143(2):839–848. doi: 10.1093/genetics/143.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shabalina S. A., Kondrashov A. S. Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet Res. 1999 Aug;74(1):23–30. doi: 10.1017/s0016672399003821. [DOI] [PubMed] [Google Scholar]
  26. Shook D. R., Brooks A., Johnson T. E. Mapping quantitative trait loci affecting life history traits in the nematode Caenorhabditis elegans. Genetics. 1996 Mar;142(3):801–817. doi: 10.1093/genetics/142.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stenico M., Lloyd A. T., Sharp P. M. Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 1994 Jul 11;22(13):2437–2446. doi: 10.1093/nar/22.13.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vassilieva L. L., Lynch M. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics. 1999 Jan;151(1):119–129. doi: 10.1093/genetics/151.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vaupel J. W., Manton K. G., Stallard E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography. 1979 Aug;16(3):439–454. [PubMed] [Google Scholar]
  30. Zwaan B. J. The evolutionary genetics of ageing and longevity. Heredity (Edinb) 1999 Jun;82(Pt 6):589–597. doi: 10.1046/j.1365-2540.1999.00544.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES