Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):155–172. doi: 10.1093/genetics/156.1.155

Molecular population genetics of X-linked genes in Drosophila pseudoobscura.

M Kovacevic 1, S W Schaeffer 1
PMCID: PMC1461252  PMID: 10978282

Abstract

This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.

Full Text

The Full Text of this article is available as a PDF (459.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. W., Arnold J., Baldwin D. G., Beckenbach A. T., Brown C. J., Bryant S. H., Coyne J. A., Harshman L. G., Heed W. B., Jeffery D. E. Four decades of inversion polymorphism in Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10367–10371. doi: 10.1073/pnas.88.22.10367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andolfatto P., Kreitman M. Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics. 2000 Apr;154(4):1681–1691. doi: 10.1093/genetics/154.4.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andolfatto P., Wall J. D., Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. doi: 10.1093/genetics/153.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aquadro C. F., Weaver A. L., Schaeffer S. W., Anderson W. W. Molecular evolution of inversions in Drosophila pseudoobscura: the amylase gene region. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):305–309. doi: 10.1073/pnas.88.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Babcock C. S., Anderson W. W. Molecular evolution of the Sex-Ratio inversion complex in Drosophila pseudoobscura: analysis of the Esterase-5 gene region. Mol Biol Evol. 1996 Feb;13(2):297–308. doi: 10.1093/oxfordjournals.molbev.a025589. [DOI] [PubMed] [Google Scholar]
  6. Beerli P., Felsenstein J. Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics. 1999 Jun;152(2):763–773. doi: 10.1093/genetics/152.2.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berry A., Kreitman M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics. 1993 Jul;134(3):869–893. doi: 10.1093/genetics/134.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blackman R. K., Meselson M. Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Drosophila hsp82 gene. J Mol Biol. 1986 Apr 20;188(4):499–515. doi: 10.1016/s0022-2836(86)80001-8. [DOI] [PubMed] [Google Scholar]
  9. Brady J. P., Richmond R. C., Oakeshott J. G. Cloning of the esterase-5 locus from Drosophila pseudoobscura and comparison with its homologue in D. melanogaster. Mol Biol Evol. 1990 Nov;7(6):525–546. doi: 10.1093/oxfordjournals.molbev.a040624. [DOI] [PubMed] [Google Scholar]
  10. Bénassi V., Aulard S., Mazeau S., Veuille M. Molecular variation of Adh and P6 genes in an African population of Drosophila melanogaster and its relation to chromosomal inversions. Genetics. 1993 Jul;134(3):789–799. doi: 10.1093/genetics/134.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caccone A., Amato G. D., Powell J. R. Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics. 1988 Apr;118(4):671–683. doi: 10.1093/genetics/118.4.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Colot H. V., Hall J. C., Rosbash M. Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. EMBO J. 1988 Dec 1;7(12):3929–3937. doi: 10.1002/j.1460-2075.1988.tb03279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coyne J. A., Felton A. A. Genic Heterogeneity at Two Alcohol Dehydrogenase Loci in DROSOPHILA PSEUDOOBSCURA and DROSOPHILA PERSIMILIS. Genetics. 1977 Oct;87(2):285–304. doi: 10.1093/genetics/87.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Coyne J. A., Felton A. A., Lewontin R. C. Extent of genetic variation at a highly polymorphic esterase locus in Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5090–5093. doi: 10.1073/pnas.75.10.5090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. David J. R. Latitudinal variability of Drosophila melanogaster: allozyme frequencies divergence between European and Afrotropical populations. Biochem Genet. 1982 Aug;20(7-8):747–762. doi: 10.1007/BF00483971. [DOI] [PubMed] [Google Scholar]
  16. Dobzhansky T., Powell J. R. Rates of dispersal of Drosophila pseudoobscura and its relatives. Proc R Soc Lond B Biol Sci. 1974 Nov 5;187(1088):281–298. doi: 10.1098/rspb.1974.0075. [DOI] [PubMed] [Google Scholar]
  17. Erickson J. W., Cline T. W. Key aspects of the primary sex determination mechanism are conserved across the genus Drosophila. Development. 1998 Aug;125(16):3259–3268. doi: 10.1242/dev.125.16.3259. [DOI] [PubMed] [Google Scholar]
  18. Hamblin M. T., Aquadro C. F. DNA sequence variation and the recombinational landscape in Drosophila pseudoobscura: a study of the second chromosome. Genetics. 1999 Oct;153(2):859–869. doi: 10.1093/genetics/153.2.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hasson E., Eanes W. F. Contrasting histories of three gene regions associated with In(3L)Payne of Drosophila melanogaster. Genetics. 1996 Dec;144(4):1565–1575. doi: 10.1093/genetics/144.4.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  21. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  23. Hudson R. R., Kaplan N. L. The coalescent process in models with selection and recombination. Genetics. 1988 Nov;120(3):831–840. doi: 10.1093/genetics/120.3.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones J. S., Bryant S. H., Lewontin R. C., Moore J. A., Prout T. Gene flow and the geographical distribution of a molecular polymorphism in Drosophila pseudoobscura. Genetics. 1981 May;98(1):157–178. doi: 10.1093/genetics/98.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Keith T. P., Brooks L. D., Lewontin R. C., Martinez-Cruzado J. C., Rigby D. L. Nearly identical allelic distributions of xanthine dehydrogenase in two populations of Drosophila pseudoobscura. Mol Biol Evol. 1985 May;2(3):206–216. doi: 10.1093/oxfordjournals.molbev.a040348. [DOI] [PubMed] [Google Scholar]
  27. Keith T. P. Frequency Distribution of Esterase-5 Alleles in Two Populations of DROSOPHILA PSEUDOOBSCURA. Genetics. 1983 Sep;105(1):135–155. doi: 10.1093/genetics/105.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lancefield D E. Linkage Relations of the Sex-Linked Characters in Drosophila Obscura. Genetics. 1922 May;7(4):335–384. doi: 10.1093/genetics/7.4.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. NOVITSKI E., PEACOCK W. J., ENGEL J. CYTOLOGICAL BASIS OF "SEX RATIO" IN DROSOPHILA PSEUDOOBSCURA. Science. 1965 Apr 23;148(3669):516–517. doi: 10.1126/science.148.3669.516. [DOI] [PubMed] [Google Scholar]
  31. Navarro A., Betrán E., Barbadilla A., Ruiz A. Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics. 1997 Jun;146(2):695–709. doi: 10.1093/genetics/146.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Noor M. A., Schug M. D., Aquadro C. F. Microsatellite variation in populations of Drosophila pseudoobscura and Drosophila persimilis. Genet Res. 2000 Feb;75(1):25–35. doi: 10.1017/s0016672399004024. [DOI] [PubMed] [Google Scholar]
  33. Pepling M. E., Gergen J. P. Conservation and function of the transcriptional regulatory protein Runt. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9087–9091. doi: 10.1073/pnas.92.20.9087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Policansky D., Ellison J. "Sex ratio" in Drosophila pseudoobscura: spermiogenic failure. Science. 1970 Aug 28;169(3948):888–889. doi: 10.1126/science.169.3948.888. [DOI] [PubMed] [Google Scholar]
  35. Popadić A., Anderson W. W. Evidence for gene conversion in the amylase multigene family of Drosophila pseudoobscura. Mol Biol Evol. 1995 Jul;12(4):564–572. doi: 10.1093/oxfordjournals.molbev.a040236. [DOI] [PubMed] [Google Scholar]
  36. Popadić A., Popadić D., Anderson W. W. Interchromosomal exchange of genetic information between gene arrangements on the third chromosome of Drosophila pseudoobscura. Mol Biol Evol. 1995 Sep;12(5):938–943. doi: 10.1093/oxfordjournals.molbev.a040271. [DOI] [PubMed] [Google Scholar]
  37. Powell J. R., Dobzhansky T., Hook J. E., Wistrand H. E. Genetics of natural populations, XLIII. Further studies on rates of dispersal of Drosophila pseudoobscura and its relatives. Genetics. 1976 Mar 25;82(3):493–506. doi: 10.1093/genetics/82.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prakash S., Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura. Genetics. 1969 Apr;61(4):841–858. doi: 10.1093/genetics/61.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Prakash S., Merritt R. B. Direct evidence of genic differentiation between sex ratio and standard gene arrangements of X chromosome in Drosophila pseudoobscura. Genetics. 1972 Sep;72(1):169–175. doi: 10.1093/genetics/72.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Prevosti A., Ribo G., Serra L., Aguade M., Balaña J., Monclus M., Mestres F. Colonization of America by Drosophila subobscura: Experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5597–5600. doi: 10.1073/pnas.85.15.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Prout T., Clark A. G. Polymorphism in genes that influence sperm displacement. Genetics. 1996 Sep;144(1):401–408. doi: 10.1093/genetics/144.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992 May;9(3):552–569. doi: 10.1093/oxfordjournals.molbev.a040727. [DOI] [PubMed] [Google Scholar]
  43. Rozas J., Aguadé M. Evidence of extensive genetic exchange in the rp49 region among polymorphic chromosome inversions in Drosophila subobscura. Genetics. 1990 Oct;126(2):417–426. doi: 10.1093/genetics/126.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rozas J., Aguadé M. Gene conversion is involved in the transfer of genetic information between naturally occurring inversions of Drosophila. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11517–11521. doi: 10.1073/pnas.91.24.11517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rozas J., Aguadé M. Transfer of genetic information in the rp49 region of Drosophila subobscura between different chromosomal gene arrangements. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8083–8087. doi: 10.1073/pnas.90.17.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  47. Rozas J., Segarra C., Ribó G., Aguadé M. Molecular population genetics of the rp49 gene region in different chromosomal inversions of Drosophila subobscura. Genetics. 1999 Jan;151(1):189–202. doi: 10.1093/genetics/151.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  49. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  50. Schaeffer S. W., Miller E. L. Estimates of gene flow in Drosophila pseudoobscura determined from nucleotide sequence analysis of the alcohol dehydrogenase region. Genetics. 1992 Oct;132(2):471–480. doi: 10.1093/genetics/132.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schaeffer S. W., Miller E. L. Molecular population genetics of an electrophoretically monomorphic protein in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1992 Sep;132(1):163–178. doi: 10.1093/genetics/132.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Segarra C., Ribó G., Aguadé M. Differentiation of Muller's chromosomal elements D and E in the obscura group of Drosophila. Genetics. 1996 Sep;144(1):139–146. doi: 10.1093/genetics/144.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Singh R. S., Lewontin R. C., Felton A. A. Genetic heterogeneity within electrophoretic "alleles" of xanthine dehydrogenase in Drosophila pseudoobscura. Genetics. 1976 Nov;84(3):609–629. doi: 10.1093/genetics/84.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Slatkin M. The average number of sites separating DNA sequences drawn from a subdivided population. Theor Popul Biol. 1987 Aug;32(1):42–49. doi: 10.1016/0040-5809(87)90038-4. [DOI] [PubMed] [Google Scholar]
  55. Sturtevant A H, Beadle G W. The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. Genetics. 1936 Sep;21(5):554–604. doi: 10.1093/genetics/21.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sturtevant A H, Dobzhansky T. Geographical Distribution and Cytology of "Sex Ratio" in Drosophila Pseudoobscura and Related Species. Genetics. 1936 Jul;21(4):473–490. doi: 10.1093/genetics/21.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sturtevant A H, Novitski E. The Homologies of the Chromosome Elements in the Genus Drosophila. Genetics. 1941 Sep;26(5):517–541. doi: 10.1093/genetics/26.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wang R. L., Hey J. The speciation history of Drosophila pseudoobscura and close relatives: inferences from DNA sequence variation at the period locus. Genetics. 1996 Nov;144(3):1113–1126. doi: 10.1093/genetics/144.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wesley C. S., Eanes W. F. Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3132–3136. doi: 10.1073/pnas.91.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wu C. I., Beckenbach A. T. Evidence for Extensive Genetic Differentiation between the Sex-Ratio and the Standard Arrangement of DROSOPHILA PSEUDOOBSCURA and D. PERSIMILIS and Identification of Hybrid Sterility Factors. Genetics. 1983 Sep;105(1):71–86. doi: 10.1093/genetics/105.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wu C. I. Virility Deficiency and the Sex-Ratio Trait in DROSOPHILA PSEUDOOBSCURA. II. Multiple Mating and Overall Virility Selection. Genetics. 1983 Nov;105(3):663–679. doi: 10.1093/genetics/105.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES