Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):351–359. doi: 10.1093/genetics/156.1.351

Evolutionary dynamics of self-incompatibility alleles in Brassica.

M K Uyenoyama 1
PMCID: PMC1461253  PMID: 10978298

Abstract

Self-incompatibility in Brassica entails the rejection of pollen grains that express specificities held in common with the seed parent. In Brassica, pollen specificity is encoded at the multipartite S-locus, a complex region comprising many expressed genes. A number of species within the Brassicaceae express sporophytic self-incompatibility, under which individual pollen grains bear specificities determined by one or both S-haplotypes of the pollen parent. Classical genetic and nucleotide-level analyses of the S-locus have revealed a dichotomy in sequence and function among S-haplotypes; in particular, all class I haplotypes show dominance over all class II haplotypes in determination of pollen specificity. Analysis of an evolutionary model that explicitly incorporates features of the Brassica system, including the class dichotomy, indicates that class II haplotypes may invade populations at lower rates and decline to extinction at higher rates than class I haplotypes. This analysis suggests convergence to an evolutionarily persistent state characterized by the maintenance in high frequency of a single class II haplotype together with many class I haplotypes, each in low frequency. This expectation appears to be consistent with empirical observations of high frequencies of relatively few distinct recessive haplotypes.

Full Text

The Full Text of this article is available as a PDF (296.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyes D. C., Nasrallah M. E., Vrebalov J., Nasrallah J. B. The self-incompatibility (S) haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin. Plant Cell. 1997 Feb;9(2):237–247. doi: 10.1105/tpc.9.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broothaerts W., Janssens G. A., Proost P., Broekaert W. F. cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol. 1995 Feb;27(3):499–511. doi: 10.1007/BF00019317. [DOI] [PubMed] [Google Scholar]
  3. Chen C. H., Nasrallah J. B. A new class of S sequences defined by a pollen recessive self-incompatibility allele of Brassica oleracea. Mol Gen Genet. 1990 Jul;222(2-3):241–248. doi: 10.1007/BF00633824. [DOI] [PubMed] [Google Scholar]
  4. Foote H. C., Ride J. P., Franklin-Tong V. E., Walker E. A., Lawrence M. J., Franklin F. C. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2265–2269. doi: 10.1073/pnas.91.6.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinata K., Watanabe M., Yamakawa S., Satta Y., Isogai A. Evolutionary aspects of the S-related genes of the Brassica self-incompatibility system: synonymous and nonsynonymous base substitutions. Genetics. 1995 Jul;140(3):1099–1104. doi: 10.1093/genetics/140.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ioerger T. R., Clark A. G., Kao T. H. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732–9735. doi: 10.1073/pnas.87.24.9732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kusaba M., Matsushita M., Okazaki K., Satta Y., Nishio T. Sequence and structural diversity of the S locus genes from different lines with the same self-recognition specificities in Brassica oleracea. Genetics. 2000 Jan;154(1):413–420. doi: 10.1093/genetics/154.1.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sakamoto K., Kusaba M., Nishio T. Polymorphism of the S-locus glycoprotein gene (SLG) and the S-locus related gene (SLR1) in Raphanus sativus L. and self-incompatible ornamental plants in the Brassicaceae. Mol Gen Genet. 1998 May;258(4):397–403. doi: 10.1007/s004380050747. [DOI] [PubMed] [Google Scholar]
  9. Schierup M. H., Vekemans X., Christiansen F. B. Allelic genealogies in sporophytic self-incompatibility systems in plants. Genetics. 1998 Nov;150(3):1187–1198. doi: 10.1093/genetics/150.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schierup M. H., Vekemans X., Christiansen F. B. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants. Genetics. 1997 Oct;147(2):835–846. doi: 10.1093/genetics/147.2.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schopfer C. R., Nasrallah M. E., Nasrallah J. B. The male determinant of self-incompatibility in Brassica. Science. 1999 Nov 26;286(5445):1697–1700. doi: 10.1126/science.286.5445.1697. [DOI] [PubMed] [Google Scholar]
  12. Suzuki G., Kai N., Hirose T., Fukui K., Nishio T., Takayama S., Isogai A., Watanabe M., Hinata K. Genomic organization of the S locus: Identification and characterization of genes in SLG/SRK region of S(9) haplotype of Brassica campestris (syn. rapa). Genetics. 1999 Sep;153(1):391–400. doi: 10.1093/genetics/153.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Uyenoyama M. K. A generalized least-squares estimate for the origin of sporophytic self-incompatibility. Genetics. 1995 Feb;139(2):975–992. doi: 10.1093/genetics/139.2.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vekemans X., Slatkin M. Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics. 1994 Aug;137(4):1157–1165. doi: 10.1093/genetics/137.4.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Xue Y., Carpenter R., Dickinson H. G., Coen E. S. Origin of allelic diversity in antirrhinum S locus RNases. Plant Cell. 1996 May;8(5):805–814. doi: 10.1105/tpc.8.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES