Skip to main content
Genetics logoLink to Genetics
. 2000 Sep;156(1):449–456. doi: 10.1093/genetics/156.1.449

Meiosis and the evolution of recombination at low mutation rates.

D D Gessler 1, S Xu 1
PMCID: PMC1461260  PMID: 10978307

Abstract

The classical understanding of recombination is that in large asexual populations with multiplicative fitness, linkage disequilibrium is negligible, and thus there is no selective agent driving an allele for recombination. This has led researchers to recognize the importance of synergistic epistatic selection in generating negative linkage disequilibrium that thereby renders an advantage to recombination. Yet data on such selection is equivocal, and various works have shown that synergistic epistasis per se, when left unquantified in its magnitude or operation, is not sufficient to drive the evolution of recombination. Here we show that neither it, nor any mechanism generating negative linkage disequilibrium among fitness-related loci, is necessary. We demonstrate that a neutral gene for recombination can increase in frequency in a large population under a low mutation rate and strict multiplicative fitness. We work in a parameter range where individuals have, on average, less than one mutation each, yet recombination can still evolve. We demonstrate this in two ways: first, by examining the consequences of recombination correlated with misrepaired DNA damage and, second, by increasing the probability of recombination with declining fitness. Interestingly, the allele spreads without repairing even a single DNA mutation.

Full Text

The Full Text of this article is available as a PDF (246.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudat F., Nicolas A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5213–5218. doi: 10.1073/pnas.94.10.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein H., Byerly H. C., Hopf F. A., Michod R. E. Genetic damage, mutation, and the evolution of sex. Science. 1985 Sep 20;229(4719):1277–1281. doi: 10.1126/science.3898363. [DOI] [PubMed] [Google Scholar]
  3. Birky C. W., Jr, Walsh J. B. Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414–6418. doi: 10.1073/pnas.85.17.6414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Calsou P., Salles B. Heat-inducible reactivation of UV-damaged bacteriophage lambda. Mol Gen Genet. 1991 Apr;226(1-2):113–119. doi: 10.1007/BF00273594. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res. 1990 Jun;55(3):199–221. doi: 10.1017/s0016672300025532. [DOI] [PubMed] [Google Scholar]
  6. Cox M. M. Recombinational crossroads: eukaryotic enzymes and the limits of bacterial precedents. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11764–11766. doi: 10.1073/pnas.94.22.11764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Massy B., Baudat F., Nicolas A. Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11929–11933. doi: 10.1073/pnas.91.25.11929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A. M. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998 Aug 7;94(3):387–398. doi: 10.1016/s0092-8674(00)81481-6. [DOI] [PubMed] [Google Scholar]
  9. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eckardt-Schupp F., Klaus C. Radiation inducible DNA repair processes in eukaryotes. Biochimie. 1999 Jan-Feb;81(1-2):161–171. doi: 10.1016/s0300-9084(99)80049-2. [DOI] [PubMed] [Google Scholar]
  11. Fabre F., Roman H. Genetic evidence for inducibility of recombination competence in yeast. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1667–1671. doi: 10.1073/pnas.74.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Felsenstein J. The effect of linkage on directional selection. Genetics. 1965 Aug;52(2):349–363. doi: 10.1093/genetics/52.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gessler D. D. The constraints of finite size in asexual populations and the rate of the ratchet. Genet Res. 1995 Dec;66(3):241–253. doi: 10.1017/s0016672300034686. [DOI] [PubMed] [Google Scholar]
  14. Gessler D. D., Xu S. On the evolution of recombination and meiosis. Genet Res. 1999 Apr;73(2):119–131. doi: 10.1017/s001667239800367x. [DOI] [PubMed] [Google Scholar]
  15. Gilbertson L. A., Stahl F. W. Initiation of meiotic recombination is independent of interhomologue interactions. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11934–11937. doi: 10.1073/pnas.91.25.11934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Golub E. I., Low K. B. Indirect stimulation of genetic recombination. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1401–1405. doi: 10.1073/pnas.80.5.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haaf T., Golub E. I., Reddy G., Radding C. M., Ward D. C. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2298–2302. doi: 10.1073/pnas.92.6.2298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haigh J. The accumulation of deleterious genes in a population--Muller's Ratchet. Theor Popul Biol. 1978 Oct;14(2):251–267. doi: 10.1016/0040-5809(78)90027-8. [DOI] [PubMed] [Google Scholar]
  19. Holbeck S. L., Strathern J. N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics. 1997 Nov;147(3):1017–1024. doi: 10.1093/genetics/147.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kanaar R., Hoeijmakers J. H., van Gent D. C. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol. 1998 Dec;8(12):483–489. doi: 10.1016/s0962-8924(98)01383-x. [DOI] [PubMed] [Google Scholar]
  21. Kimura M., Maruyama T. The mutational load with epistatic gene interactions in fitness. Genetics. 1966 Dec;54(6):1337–1351. doi: 10.1093/genetics/54.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kondrashov A. S. Selection against harmful mutations in large sexual and asexual populations. Genet Res. 1982 Dec;40(3):325–332. doi: 10.1017/s0016672300019194. [DOI] [PubMed] [Google Scholar]
  23. Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents. doi: 10.1128/mmbr.63.4.751-813.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liang F., Han M., Romanienko P. J., Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5172–5177. doi: 10.1073/pnas.95.9.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lichten M., Goldman A. S. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. doi: 10.1146/annurev.ge.29.120195.002231. [DOI] [PubMed] [Google Scholar]
  26. Peck J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics. 1994 Jun;137(2):597–606. doi: 10.1093/genetics/137.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Raderschall E., Golub E. I., Haaf T. Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1921–1926. doi: 10.1073/pnas.96.5.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ruvinsky A. Sex, meiosis and multicellularity. Acta Biotheor. 1997 Jun;45(2):127–141. doi: 10.1023/a:1000334022255. [DOI] [PubMed] [Google Scholar]
  29. Shinohara A., Ogawa T. Homologous recombination and the roles of double-strand breaks. Trends Biochem Sci. 1995 Oct;20(10):387–391. doi: 10.1016/s0968-0004(00)89085-4. [DOI] [PubMed] [Google Scholar]
  30. Sonoda E., Sasaki M. S., Buerstedde J. M., Bezzubova O., Shinohara A., Ogawa H., Takata M., Yamaguchi-Iwai Y., Takeda S. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 1998 Jan 15;17(2):598–608. doi: 10.1093/emboj/17.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stahl F. Meiotic recombination in yeast: coronation of the double-strand-break repair model. Cell. 1996 Dec 13;87(6):965–968. doi: 10.1016/s0092-8674(00)81791-2. [DOI] [PubMed] [Google Scholar]
  32. Strathern J. N., Shafer B. K., McGill C. B. DNA synthesis errors associated with double-strand-break repair. Genetics. 1995 Jul;140(3):965–972. doi: 10.1093/genetics/140.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  34. Thacker J. Repair of ionizing radiation damage in mammalian cells. Alternative pathways and their fidelity. C R Acad Sci III. 1999 Feb-Mar;322(2-3):103–108. doi: 10.1016/s0764-4469(99)80030-4. [DOI] [PubMed] [Google Scholar]
  35. Thaler D. S., Stahl F. W. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu Rev Genet. 1988;22:169–197. doi: 10.1146/annurev.ge.22.120188.001125. [DOI] [PubMed] [Google Scholar]
  36. Vispé S., Cazaux C., Lesca C., Defais M. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res. 1998 Jun 15;26(12):2859–2864. doi: 10.1093/nar/26.12.2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weigle J. J. Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):628–636. doi: 10.1073/pnas.39.7.628. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES