Skip to main content
Genetics logoLink to Genetics
. 2000 Oct;156(2):733–748. doi: 10.1093/genetics/156.2.733

Identification of genomic regions that interact with a viable allele of the Drosophila protein tyrosine phosphatase corkscrew.

L Firth 1, J Manchester 1, J A Lorenzen 1, M Baron 1, L A Perkins 1
PMCID: PMC1461264  PMID: 11014820

Abstract

Signaling by receptor tyrosine kinases (RTKs) is critical for a multitude of developmental decisions and processes. Among the molecules known to transduce the RTK-generated signal is the nonreceptor protein tyrosine phosphatase Corkscrew (Csw). Previously, Csw has been demonstrated to function throughout the Drosophila life cycle and, among the RTKs tested, Csw is essential in the Torso, Sevenless, EGF, and Breathless/FGF RTK pathways. While the biochemical function of Csw remains to be unambiguously elucidated, current evidence suggests that Csw plays more than one role during transduction of the RTK signal and, further, the molecular mechanism of Csw function differs depending upon the RTK in question. The isolation and characterization of a new, spontaneously arising, viable allele of csw, csw(lf), has allowed us to undertake a genetic approach to identify loci required for Csw function. The rough eye and wing vein gap phenotypes exhibited by adult flies homo- or hemizygous for csw(lf) has provided a sensitized background from which we have screened a collection of second and third chromosome deficiencies to identify 33 intervals that enhance and 21 intervals that suppress these phenotypes. We have identified intervals encoding known positive mediators of RTK signaling, e.g., drk, dos, Egfr, E(Egfr)B56, pnt, Ras1, rolled/MAPK, sina, spen, Src64B, Star, Su(Raf)3C, and vein, as well as known negative mediators of RTK signaling, e.g., aos, ed, net, Src42A, sty, and su(ve). Of particular interest are the 5 lethal enhancing intervals and 14 suppressing intervals for which no candidate genes have been identified.

Full Text

The Full Text of this article is available as a PDF (853.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard J. D., Chang H. C., Herbst R., McNeill H., Simon M. A. The SH2-containing tyrosine phosphatase corkscrew is required during signaling by sevenless, Ras1 and Raf. Development. 1996 Apr;122(4):1137–1146. doi: 10.1242/dev.122.4.1137. [DOI] [PubMed] [Google Scholar]
  2. Allard J. D., Herbst R., Carroll P. M., Simon M. A. Mutational analysis of the SRC homology 2 domain protein-tyrosine phosphatase Corkscrew. J Biol Chem. 1998 May 22;273(21):13129–13135. doi: 10.1074/jbc.273.21.13129. [DOI] [PubMed] [Google Scholar]
  3. Baker N. E., Rubin G. M. Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature. 1989 Jul 13;340(6229):150–153. doi: 10.1038/340150a0. [DOI] [PubMed] [Google Scholar]
  4. Baldarelli R. M., Mahoney P. A., Salas F., Gustavson E., Boyer P. D., Chang M. F., Roark M., Lengyel J. A. Transcripts of the Drosophila blastoderm-specific locus, terminus, are concentrated posteriorly and encode a potential DNA-binding finger. Dev Biol. 1988 Jan;125(1):85–95. doi: 10.1016/0012-1606(88)90061-9. [DOI] [PubMed] [Google Scholar]
  5. Begemann G., Michon A. M., vd Voorn L., Wepf R., Mlodzik M. The Drosophila orphan nuclear receptor seven-up requires the Ras pathway for its function in photoreceptor determination. Development. 1995 Jan;121(1):225–235. doi: 10.1242/dev.121.1.225. [DOI] [PubMed] [Google Scholar]
  6. Beiman M., Shilo B. Z., Volk T. Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev. 1996 Dec 1;10(23):2993–3002. doi: 10.1101/gad.10.23.2993. [DOI] [PubMed] [Google Scholar]
  7. Brunner D., Dücker K., Oellers N., Hafen E., Scholz H., Klämbt C. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature. 1994 Aug 4;370(6488):386–389. doi: 10.1038/370386a0. [DOI] [PubMed] [Google Scholar]
  8. Brönner G., Chu-LaGraff Q., Doe C. Q., Cohen B., Weigel D., Taubert H., Jäckle H. Sp1/egr-like zinc-finger protein required for endoderm specification and germ-layer formation in Drosophila. Nature. 1994 Jun 23;369(6482):664–668. doi: 10.1038/369664a0. [DOI] [PubMed] [Google Scholar]
  9. Brönner G., Jäckle H. Control and function of terminal gap gene activity in the posterior pole region of the Drosophila embryo. Mech Dev. 1991 Nov;35(3):205–211. doi: 10.1016/0925-4773(91)90019-3. [DOI] [PubMed] [Google Scholar]
  10. Buff E., Carmena A., Gisselbrecht S., Jiménez F., Michelson A. M. Signalling by the Drosophila epidermal growth factor receptor is required for the specification and diversification of embryonic muscle progenitors. Development. 1998 Jun;125(11):2075–2086. doi: 10.1242/dev.125.11.2075. [DOI] [PubMed] [Google Scholar]
  11. Carmena A., Gisselbrecht S., Harrison J., Jiménez F., Michelson A. M. Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev. 1998 Dec 15;12(24):3910–3922. doi: 10.1101/gad.12.24.3910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carthew R. W., Rubin G. M. seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell. 1990 Nov 2;63(3):561–577. doi: 10.1016/0092-8674(90)90452-k. [DOI] [PubMed] [Google Scholar]
  13. Casanova J., Furriols M., McCormick C. A., Struhl G. Similarities between trunk and spätzle, putative extracellular ligands specifying body pattern in Drosophila. Genes Dev. 1995 Oct 15;9(20):2539–2544. doi: 10.1101/gad.9.20.2539. [DOI] [PubMed] [Google Scholar]
  14. Casci T., Vinós J., Freeman M. Sprouty, an intracellular inhibitor of Ras signaling. Cell. 1999 Mar 5;96(5):655–665. doi: 10.1016/s0092-8674(00)80576-0. [DOI] [PubMed] [Google Scholar]
  15. Chou T. B., Perrimon N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1673–1679. doi: 10.1093/genetics/144.4.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cleghon V., Feldmann P., Ghiglione C., Copeland T. D., Perrimon N., Hughes D. A., Morrison D. K. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Mol Cell. 1998 Dec;2(6):719–727. doi: 10.1016/s1097-2765(00)80287-7. [DOI] [PubMed] [Google Scholar]
  17. Cleghon V., Gayko U., Copeland T. D., Perkins L. A., Perrimon N., Morrison D. K. Drosophila terminal structure development is regulated by the compensatory activities of positive and negative phosphotyrosine signaling sites on the Torso RTK. Genes Dev. 1996 Mar 1;10(5):566–577. doi: 10.1101/gad.10.5.566. [DOI] [PubMed] [Google Scholar]
  18. Clifford R. J., Schüpbach T. Coordinately and differentially mutable activities of torpedo, the Drosophila melanogaster homolog of the vertebrate EGF receptor gene. Genetics. 1989 Dec;123(4):771–787. doi: 10.1093/genetics/123.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cooper J. A., Simon M. A., Kussick S. J. Signaling by ectopically expressed Drosophila Src64 requires the protein-tyrosine phosphatase corkscrew and the adapter downstream of receptor kinases. Cell Growth Differ. 1996 Nov;7(11):1435–1441. [PubMed] [Google Scholar]
  20. Dickson B. J., van der Straten A., Dominguez M., Hafen E. Mutations Modulating Raf signaling in Drosophila eye development. Genetics. 1996 Jan;142(1):163–171. doi: 10.1093/genetics/142.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dickson B., Sprenger F., Morrison D., Hafen E. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature. 1992 Dec 10;360(6404):600–603. doi: 10.1038/360600a0. [DOI] [PubMed] [Google Scholar]
  22. Freeman M., Klämbt C., Goodman C. S., Rubin G. M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell. 1992 Jun 12;69(6):963–975. doi: 10.1016/0092-8674(92)90615-j. [DOI] [PubMed] [Google Scholar]
  23. Fristrom D., Gotwals P., Eaton S., Kornberg T. B., Sturtevant M., Bier E., Fristrom J. W. Blistered: a gene required for vein/intervein formation in wings of Drosophila. Development. 1994 Sep;120(9):2661–2671. doi: 10.1242/dev.120.9.2661. [DOI] [PubMed] [Google Scholar]
  24. Garcia-Bellido A., de Celis J. F. Developmental genetics of the venation pattern of Drosophila. Annu Rev Genet. 1992;26:277–304. doi: 10.1146/annurev.ge.26.120192.001425. [DOI] [PubMed] [Google Scholar]
  25. Gaul U., Mardon G., Rubin G. M. A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell. 1992 Mar 20;68(6):1007–1019. doi: 10.1016/0092-8674(92)90073-l. [DOI] [PubMed] [Google Scholar]
  26. Ghiglione C., Perrimon N., Perkins L. A. Quantitative variations in the level of MAPK activity control patterning of the embryonic termini in Drosophila. Dev Biol. 1999 Jan 1;205(1):181–193. doi: 10.1006/dbio.1998.9102. [DOI] [PubMed] [Google Scholar]
  27. Gisselbrecht S., Skeath J. B., Doe C. Q., Michelson A. M. heartless encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev. 1996 Dec 1;10(23):3003–3017. doi: 10.1101/gad.10.23.3003. [DOI] [PubMed] [Google Scholar]
  28. Karim F. D., Chang H. C., Therrien M., Wassarman D. A., Laverty T., Rubin G. M. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics. 1996 May;143(1):315–329. doi: 10.1093/genetics/143.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Khokhlatchev A. V., Canagarajah B., Wilsbacher J., Robinson M., Atkinson M., Goldsmith E., Cobb M. H. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell. 1998 May 15;93(4):605–615. doi: 10.1016/s0092-8674(00)81189-7. [DOI] [PubMed] [Google Scholar]
  30. Kolodkin A. L., Pickup A. T., Lin D. M., Goodman C. S., Banerjee U. Characterization of Star and its interactions with sevenless and EGF receptor during photoreceptor cell development in Drosophila. Development. 1994 Jul;120(7):1731–1745. doi: 10.1242/dev.120.7.1731. [DOI] [PubMed] [Google Scholar]
  31. Kramer S., Okabe M., Hacohen N., Krasnow M. A., Hiromi Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development. 1999 Jun;126(11):2515–2525. doi: 10.1242/dev.126.11.2515. [DOI] [PubMed] [Google Scholar]
  32. Lu X., Chou T. B., Williams N. G., Roberts T., Perrimon N. Control of cell fate determination by p21ras/Ras1, an essential component of torso signaling in Drosophila. Genes Dev. 1993 Apr;7(4):621–632. doi: 10.1101/gad.7.4.621. [DOI] [PubMed] [Google Scholar]
  33. Lu X., Li Y. Drosophila Src42A is a negative regulator of RTK signaling. Dev Biol. 1999 Apr 1;208(1):233–243. doi: 10.1006/dbio.1999.9196. [DOI] [PubMed] [Google Scholar]
  34. Metzger R. J., Krasnow M. A. Genetic control of branching morphogenesis. Science. 1999 Jun 4;284(5420):1635–1639. doi: 10.1126/science.284.5420.1635. [DOI] [PubMed] [Google Scholar]
  35. Michelson A. M., Gisselbrecht S., Buff E., Skeath J. B. Heartbroken is a specific downstream mediator of FGF receptor signalling in Drosophila. Development. 1998 Nov;125(22):4379–4389. doi: 10.1242/dev.125.22.4379. [DOI] [PubMed] [Google Scholar]
  36. Michelson A. M. Muscle pattern diversification in Drosophila is determined by the autonomous function of homeotic genes in the embryonic mesoderm. Development. 1994 Apr;120(4):755–768. doi: 10.1242/dev.120.4.755. [DOI] [PubMed] [Google Scholar]
  37. Montagne J., Groppe J., Guillemin K., Krasnow M. A., Gehring W. J., Affolter M. The Drosophila Serum Response Factor gene is required for the formation of intervein tissue of the wing and is allelic to blistered. Development. 1996 Sep;122(9):2589–2597. doi: 10.1242/dev.122.9.2589. [DOI] [PubMed] [Google Scholar]
  38. Perkins L. A., Johnson M. R., Melnick M. B., Perrimon N. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev Biol. 1996 Nov 25;180(1):63–81. doi: 10.1006/dbio.1996.0285. [DOI] [PubMed] [Google Scholar]
  39. Perkins L. A., Larsen I., Perrimon N. corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell. 1992 Jul 24;70(2):225–236. doi: 10.1016/0092-8674(92)90098-w. [DOI] [PubMed] [Google Scholar]
  40. Perrimon N., Lu X., Hou X. S., Hsu J. C., Melnick M. B., Chou T. B., Perkins L. A. Dissection of the Torso signal transduction pathway in Drosophila. Mol Reprod Dev. 1995 Dec;42(4):515–522. doi: 10.1002/mrd.1080420421. [DOI] [PubMed] [Google Scholar]
  41. Perrimon N., Perkins L. A. There must be 50 ways to rule the signal: the case of the Drosophila EGF receptor. Cell. 1997 Apr 4;89(1):13–16. doi: 10.1016/s0092-8674(00)80177-4. [DOI] [PubMed] [Google Scholar]
  42. Pignoni F., Baldarelli R. M., Steingrímsson E., Diaz R. J., Patapoutian A., Merriam J. R., Lengyel J. A. The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell. 1990 Jul 13;62(1):151–163. doi: 10.1016/0092-8674(90)90249-e. [DOI] [PubMed] [Google Scholar]
  43. Pignoni F., Baldarelli R. M., Steingrímsson E., Diaz R. J., Patapoutian A., Merriam J. R., Lengyel J. A. The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell. 1990 Jul 13;62(1):151–163. doi: 10.1016/0092-8674(90)90249-e. [DOI] [PubMed] [Google Scholar]
  44. Pignoni F., Steingrímsson E., Lengyel J. A. bicoid and the terminal system activate tailless expression in the early Drosophila embryo. Development. 1992 May;115(1):239–251. doi: 10.1242/dev.115.1.239. [DOI] [PubMed] [Google Scholar]
  45. Raabe T., Riesgo-Escovar J., Liu X., Bausenwein B. S., Deak P., Maröy P., Hafen E. DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 in Drosophila. Cell. 1996 Jun 14;85(6):911–920. doi: 10.1016/s0092-8674(00)81274-x. [DOI] [PubMed] [Google Scholar]
  46. Roch F., Baonza A., Martín-Blanco E., García-Bellido A. Genetic interactions and cell behaviour in blistered mutants during proliferation and differentiation of the Drosophila wing. Development. 1998 May;125(10):1823–1832. doi: 10.1242/dev.125.10.1823. [DOI] [PubMed] [Google Scholar]
  47. Samakovlis C., Hacohen N., Manning G., Sutherland D. C., Guillemin K., Krasnow M. A. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development. 1996 May;122(5):1395–1407. doi: 10.1242/dev.122.5.1395. [DOI] [PubMed] [Google Scholar]
  48. Sawamoto K., Okano H., Kobayakawa Y., Hayashi S., Mikoshiba K., Tanimura T. The function of argos in regulating cell fate decisions during Drosophila eye and wing vein development. Dev Biol. 1994 Jul;164(1):267–276. doi: 10.1006/dbio.1994.1197. [DOI] [PubMed] [Google Scholar]
  49. Schweitzer R., Shilo B. Z. A thousand and one roles for the Drosophila EGF receptor. Trends Genet. 1997 May;13(5):191–196. doi: 10.1016/s0168-9525(97)01091-3. [DOI] [PubMed] [Google Scholar]
  50. Sigal I. S., Gibbs J. B., D'Alonzo J. S., Temeles G. L., Wolanski B. S., Socher S. H., Scolnick E. M. Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc Natl Acad Sci U S A. 1986 Feb;83(4):952–956. doi: 10.1073/pnas.83.4.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Simcox A. A., Grumbling G., Schnepp B., Bennington-Mathias C., Hersperger E., Shearn A. Molecular, phenotypic, and expression analysis of vein, a gene required for growth of the Drosophila wing disc. Dev Biol. 1996 Aug 1;177(2):475–489. doi: 10.1006/dbio.1996.0179. [DOI] [PubMed] [Google Scholar]
  52. Simon M. A., Bowtell D. D., Dodson G. S., Laverty T. R., Rubin G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 1991 Nov 15;67(4):701–716. doi: 10.1016/0092-8674(91)90065-7. [DOI] [PubMed] [Google Scholar]
  53. Takahashi F., Endo S., Kojima T., Saigo K. Regulation of cell-cell contacts in developing Drosophila eyes by Dsrc41, a new, close relative of vertebrate c-src. Genes Dev. 1996 Jul 1;10(13):1645–1656. doi: 10.1101/gad.10.13.1645. [DOI] [PubMed] [Google Scholar]
  54. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  55. Tomlinson A., Ready D. F. Cell fate in the Drosophila ommatidium. Dev Biol. 1987 Sep;123(1):264–275. doi: 10.1016/0012-1606(87)90448-9. [DOI] [PubMed] [Google Scholar]
  56. Van Vactor D., O'Reilly A. M., Neel B. G. Genetic analysis of protein tyrosine phosphatases. Curr Opin Genet Dev. 1998 Feb;8(1):112–126. doi: 10.1016/s0959-437x(98)80070-1. [DOI] [PubMed] [Google Scholar]
  57. Weigel D., Jürgens G., Klingler M., Jäckle H. Two gap genes mediate maternal terminal pattern information in Drosophila. Science. 1990 Apr 27;248(4954):495–498. doi: 10.1126/science.2158673. [DOI] [PubMed] [Google Scholar]
  58. Yarnitzky T., Volk T. Laminin is required for heart, somatic muscles, and gut development in the Drosophila embryo. Dev Biol. 1995 Jun;169(2):609–618. doi: 10.1006/dbio.1995.1173. [DOI] [PubMed] [Google Scholar]
  59. van der Geer P., Hunter T., Lindberg R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES