Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Sep 15;24(18):3621–3628. doi: 10.1093/nar/24.18.3621

Differential expression of lacZ in the liver and kidney of transgenic mice carrying chimeric lacZ-erythropoietin gene constructs with or without its 1.2 kb 3'-flanking sequence.

M A Haidar 1, F Loya 1, Y Yang 1, H Lin 1, A Glassman 1, M J Keating 1, E Goldwasser 1, M Albitar 1
PMCID: PMC146127  PMID: 8836192

Abstract

Erythropoietin (EPO) plays a key role in erythropoiesis and is expressed predominantly in the fetal liver and in the adult kidney. The EPO gene is up-regulated at the transcriptional level under hypoxic/anemic conditions. We studied the role of the 5'- and 3'-flanking sequences of the mouse EPO gene in its tissue-specific and hypoxia-induced expression by developing transgenic mouse lines carrying chimeric EPO-lacZ gene constructs. Transgenic mice carrying a 6.5 kb segment of the 5'-sequence and most of the EPO gene in which lacZ was substituted for exon 1 (5'-lacZ-EPO) demonstrated induction of lacZ expression following hypoxia/ anemia induction in both the liver and kidney of adult mice. However, transgenic mice carrying the above construct along with the 1.2 kb 3'-flanking sequence (5'-lacZ-EPO-3') showed a high level of lacZ expression following hypoxia/anemia induction in adult kidney but not in adult liver. With the aim of further understanding the role of the 3'-flanking sequence in tissue-specific expression of the EPO gene, we studied the interactions of protein factors with this 1.2 kb 3' region and demonstrated that multiple sets of protein factors interact tissue specifically with a 10 bp sequence, TCAAAGATGG, located downstream of the previously characterized 3' hypoxia-responsive enhancer element.

Full Text

The Full Text of this article is available as a PDF (183.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanchard K. L., Acquaviva A. M., Galson D. L., Bunn H. F. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol. 1992 Dec;12(12):5373–5385. doi: 10.1128/mcb.12.12.5373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinster R. L., Chen H. Y., Trumbauer M. E., Yagle M. K., Palmiter R. D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4438–4442. doi: 10.1073/pnas.82.13.4438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorn A., Bollekens J., Staub A., Benoist C., Mathis D. A multiplicity of CCAAT box-binding proteins. Cell. 1987 Sep 11;50(6):863–872. doi: 10.1016/0092-8674(87)90513-7. [DOI] [PubMed] [Google Scholar]
  5. Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
  6. Galson D. L., Tsuchiya T., Tendler D. S., Huang L. E., Ren Y., Ogura T., Bunn H. F. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1. Mol Cell Biol. 1995 Apr;15(4):2135–2144. doi: 10.1128/mcb.15.4.2135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garzon R. J., Zehner Z. E. Multiple silencer elements are involved in regulating the chicken vimentin gene. Mol Cell Biol. 1994 Feb;14(2):934–943. doi: 10.1128/mcb.14.2.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haidar M. A., Henning D., Busch H. Sp1 is essential and its position is important for p120 gene transcription: a 35 bp juxtaposed positive regulatory element enhances transcription 2.5 fold. Nucleic Acids Res. 1991 Dec 11;19(23):6559–6563. doi: 10.1093/nar/19.23.6559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. JACOBSON L. O., GOLDWASSER E., FRIED W., PLZAK L. Role of the kidney in erythropoiesis. Nature. 1957 Mar 23;179(4560):633–634. doi: 10.1038/179633a0. [DOI] [PubMed] [Google Scholar]
  10. Kirkpatrick R. B., Parveen Z., Martin P. F. Isolation of silencer-containing sequences causing a tissue-specific position effect on alcohol dehydrogenase expression in Drosophila melanogaster. Dev Genet. 1994;15(2):188–200. doi: 10.1002/dvg.1020150209. [DOI] [PubMed] [Google Scholar]
  11. Koury M. J., Bondurant M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science. 1990 Apr 20;248(4953):378–381. doi: 10.1126/science.2326648. [DOI] [PubMed] [Google Scholar]
  12. Krantz S. B. Erythropoietin. Blood. 1991 Feb 1;77(3):419–434. [PubMed] [Google Scholar]
  13. Loya F., Yang Y., Lin H., Goldwasser E., Albitar M. Transgenic mice carrying the erythropoietin gene promoter linked to lacZ express the reporter in proximal convoluted tubule cells after hypoxia. Blood. 1994 Sep 15;84(6):1831–1836. [PubMed] [Google Scholar]
  14. Madan A., Curtin P. T. A 24-base-pair sequence 3' to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3928–3932. doi: 10.1073/pnas.90.9.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Madan A., Lin C., Hatch S. L., 2nd, Curtin P. T. Regulated basal, inducible, and tissue-specific human erythropoietin gene expression in transgenic mice requires multiple cis DNA sequences. Blood. 1995 May 15;85(10):2735–2741. [PubMed] [Google Scholar]
  16. Maxwell P. H., Osmond M. K., Pugh C. W., Heryet A., Nicholls L. G., Tan C. C., Doe B. G., Ferguson D. J., Johnson M. H., Ratcliffe P. J. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 1993 Nov;44(5):1149–1162. doi: 10.1038/ki.1993.362. [DOI] [PubMed] [Google Scholar]
  17. McDonald J. D., Lin F. K., Goldwasser E. Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Mol Cell Biol. 1986 Mar;6(3):842–848. doi: 10.1128/mcb.6.3.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McDonald J., Beru N., Goldwasser E. Rearrangement and expression of erythropoietin genes in transformed mouse cells. Mol Cell Biol. 1987 Jan;7(1):365–370. doi: 10.1128/mcb.7.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pugh C. W., Tan C. C., Jones R. W., Ratcliffe P. J. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3' to the mouse erythropoietin gene. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10553–10557. doi: 10.1073/pnas.88.23.10553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ridley D. M., Dawkins F., Perlin E. Erythropoietin: a review. J Natl Med Assoc. 1994 Feb;86(2):129–135. [PMC free article] [PubMed] [Google Scholar]
  21. Sawyer S. T., Krantz S. B., Goldwasser E. Binding and receptor-mediated endocytosis of erythropoietin in Friend virus-infected erythroid cells. J Biol Chem. 1987 Apr 25;262(12):5554–5562. [PubMed] [Google Scholar]
  22. Schoenherr C. J., Anderson D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science. 1995 Mar 3;267(5202):1360–1363. doi: 10.1126/science.7871435. [DOI] [PubMed] [Google Scholar]
  23. Semenza G. L., Dureza R. C., Traystman M. D., Gearhart J. D., Antonarakis S. E. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Mol Cell Biol. 1990 Mar;10(3):930–938. doi: 10.1128/mcb.10.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Semenza G. L., Koury S. T., Nejfelt M. K., Gearhart J. D., Antonarakis S. E. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8725–8729. doi: 10.1073/pnas.88.19.8725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Semenza G. L., Nejfelt M. K., Chi S. M., Antonarakis S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5680–5684. doi: 10.1073/pnas.88.13.5680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Semenza G. L., Traystman M. D., Gearhart J. D., Antonarakis S. E. Polycythemia in transgenic mice expressing the human erythropoietin gene. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2301–2305. doi: 10.1073/pnas.86.7.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Semenza G. L., Wang G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992 Dec;12(12):5447–5454. doi: 10.1128/mcb.12.12.5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shoemaker C. B., Mitsock L. D. Murine erythropoietin gene: cloning, expression, and human gene homology. Mol Cell Biol. 1986 Mar;6(3):849–858. doi: 10.1128/mcb.6.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Targa F. R., de Moura Gallo C. V., Huesca M., Scherrer K., Marcaud L. Silencer and enhancer elements located at the 3'-side of the chicken and duck alpha-globin-encoding gene domains. Gene. 1993 Jul 30;129(2):229–237. doi: 10.1016/0378-1119(93)90273-6. [DOI] [PubMed] [Google Scholar]
  30. Tsuchiya T., Ueda M., Ochiai H., Imajoh-Ohmi S., Kanegasaki S. Erythropoietin 5'-flanking sequence-binding protein induced during hypoxia and cobalt exposure. J Biochem. 1993 Mar;113(3):395–400. doi: 10.1093/oxfordjournals.jbchem.a124057. [DOI] [PubMed] [Google Scholar]
  31. Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu H., Liu X., Jaenisch R., Lodish H. F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell. 1995 Oct 6;83(1):59–67. doi: 10.1016/0092-8674(95)90234-1. [DOI] [PubMed] [Google Scholar]
  33. Zanjani E. D., Poster J., Burlington H., Mann L. I., Wasserman L. R. Liver as the primary site of erythropoietin formation in the fetus. J Lab Clin Med. 1977 Mar;89(3):640–644. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES