Skip to main content
Genetics logoLink to Genetics
. 2000 Oct;156(2):723–731. doi: 10.1093/genetics/156.2.723

Semaphorin-1a acts in concert with the cell adhesion molecules fasciclin II and connectin to regulate axon fasciculation in Drosophila.

H H Yu 1, A S Huang 1, A L Kolodkin 1
PMCID: PMC1461270  PMID: 11014819

Abstract

Semaphorins comprise a large family of phylogenetically conserved secreted and transmembrane glycoproteins, many of which have been implicated in repulsive axon guidance events. The transmembrane semaphorin Sema-1a in Drosophila is expressed on motor axons and is required for the generation of neuromuscular connectivity. Sema-1a can function as an axonal repellent and mediates motor axon defasciculation. Here, by manipulating the levels of Sema-1a and the cell adhesion molecules fasciclin II (Fas II) and connectin (Conn) on motor axons, we provide further evidence that Sema-1a mediates axonal defasciculation events by acting as an axonally localized repellent and that correct motor axon guidance results from a balance between attractive and repulsive guidance cues expressed on motor neurons.

Full Text

The Full Text of this article is available as a PDF (313.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  2. Chiba A., Snow P., Keshishian H., Hotta Y. Fasciclin III as a synaptic target recognition molecule in Drosophila. Nature. 1995 Mar 9;374(6518):166–168. doi: 10.1038/374166a0. [DOI] [PubMed] [Google Scholar]
  3. Encinas J. A., Kikuchi K., Chedotal A., de Castro F., Goodman C. S., Kimura T. Cloning, expression, and genetic mapping of Sema W, a member of the semaphorin family. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2491–2496. doi: 10.1073/pnas.96.5.2491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fambrough D., Goodman C. S. The Drosophila beaten path gene encodes a novel secreted protein that regulates defasciculation at motor axon choice points. Cell. 1996 Dec 13;87(6):1049–1058. doi: 10.1016/s0092-8674(00)81799-7. [DOI] [PubMed] [Google Scholar]
  5. Grenningloh G., Rehm E. J., Goodman C. S. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell. 1991 Oct 4;67(1):45–57. doi: 10.1016/0092-8674(91)90571-f. [DOI] [PubMed] [Google Scholar]
  6. Kikuchi K., Chédotal A., Hanafusa H., Ujimasa Y., de Castro F., Goodman C. S., Kimura T. Cloning and characterization of a novel class VI semaphorin, semaphorin Y. Mol Cell Neurosci. 1999 Jan;13(1):9–23. doi: 10.1006/mcne.1998.0732. [DOI] [PubMed] [Google Scholar]
  7. Kose H., Rose D., Zhu X., Chiba A. Homophilic synaptic target recognition mediated by immunoglobulin-like cell adhesion molecule Fasciclin III. Development. 1997 Oct;124(20):4143–4152. doi: 10.1242/dev.124.20.4143. [DOI] [PubMed] [Google Scholar]
  8. Landmesser L., Dahm L., Schultz K., Rutishauser U. Distinct roles for adhesion molecules during innervation of embryonic chick muscle. Dev Biol. 1988 Dec;130(2):645–670. doi: 10.1016/0012-1606(88)90358-2. [DOI] [PubMed] [Google Scholar]
  9. Lin D. M., Fetter R. D., Kopczynski C., Grenningloh G., Goodman C. S. Genetic analysis of Fasciclin II in Drosophila: defasciculation, refasciculation, and altered fasciculation. Neuron. 1994 Nov;13(5):1055–1069. doi: 10.1016/0896-6273(94)90045-0. [DOI] [PubMed] [Google Scholar]
  10. Lin D. M., Goodman C. S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron. 1994 Sep;13(3):507–523. doi: 10.1016/0896-6273(94)90022-1. [DOI] [PubMed] [Google Scholar]
  11. Luo L., Liao Y. J., Jan L. Y., Jan Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 1994 Aug 1;8(15):1787–1802. doi: 10.1101/gad.8.15.1787. [DOI] [PubMed] [Google Scholar]
  12. Mark M. D., Lohrum M., Püschel A. W. Patterning neuronal connections by chemorepulsion: the semaphorins. Cell Tissue Res. 1997 Nov;290(2):299–306. doi: 10.1007/s004410050934. [DOI] [PubMed] [Google Scholar]
  13. Meadows L. A., Gell D., Broadie K., Gould A. P., White R. A. The cell adhesion molecule, connectin, and the development of the Drosophila neuromuscular system. J Cell Sci. 1994 Jan;107(Pt 1):321–328. doi: 10.1242/jcs.107.1.321. [DOI] [PubMed] [Google Scholar]
  14. Mueller B. K. Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci. 1999;22:351–388. doi: 10.1146/annurev.neuro.22.1.351. [DOI] [PubMed] [Google Scholar]
  15. Nose A., Mahajan V. B., Goodman C. S. Connectin: a homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervate them in Drosophila. Cell. 1992 Aug 21;70(4):553–567. doi: 10.1016/0092-8674(92)90426-d. [DOI] [PubMed] [Google Scholar]
  16. Nose A., Takeichi M., Goodman C. S. Ectopic expression of connectin reveals a repulsive function during growth cone guidance and synapse formation. Neuron. 1994 Sep;13(3):525–539. doi: 10.1016/0896-6273(94)90023-x. [DOI] [PubMed] [Google Scholar]
  17. Nose A., Umeda T., Takeichi M. Neuromuscular target recognition by a homophilic interaction of connectin cell adhesion molecules in Drosophila. Development. 1997 Apr;124(8):1433–1441. doi: 10.1242/dev.124.8.1433. [DOI] [PubMed] [Google Scholar]
  18. Raper J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol. 2000 Feb;10(1):88–94. doi: 10.1016/s0959-4388(99)00057-4. [DOI] [PubMed] [Google Scholar]
  19. Schuster C. M., Davis G. W., Fetter R. D., Goodman C. S. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron. 1996 Oct;17(4):641–654. doi: 10.1016/s0896-6273(00)80197-x. [DOI] [PubMed] [Google Scholar]
  20. Tang J., Rutishauser U., Landmesser L. Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron. 1994 Aug;13(2):405–414. doi: 10.1016/0896-6273(94)90356-5. [DOI] [PubMed] [Google Scholar]
  21. Vactor D. V., Sink H., Fambrough D., Tsoo R., Goodman C. S. Genes that control neuromuscular specificity in Drosophila. Cell. 1993 Jun 18;73(6):1137–1153. doi: 10.1016/0092-8674(93)90643-5. [DOI] [PubMed] [Google Scholar]
  22. Walsh F. S., Doherty P. Factors regulating the expression and function of calcium-independent cell adhesion molecules. Curr Opin Cell Biol. 1993 Oct;5(5):791–796. doi: 10.1016/0955-0674(93)90027-n. [DOI] [PubMed] [Google Scholar]
  23. Winberg M. L., Noordermeer J. N., Tamagnone L., Comoglio P. M., Spriggs M. K., Tessier-Lavigne M., Goodman C. S. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell. 1998 Dec 23;95(7):903–916. doi: 10.1016/s0092-8674(00)81715-8. [DOI] [PubMed] [Google Scholar]
  24. Xu X. M., Fisher D. A., Zhou L., White F. A., Ng S., Snider W. D., Luo Y. The transmembrane protein semaphorin 6A repels embryonic sympathetic axons. J Neurosci. 2000 Apr 1;20(7):2638–2648. doi: 10.1523/JNEUROSCI.20-07-02638.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yoshihara Y., Mori K. Basic principles and molecular mechanisms of olfactory axon pathfinding. Cell Tissue Res. 1997 Nov;290(2):457–463. doi: 10.1007/s004410050953. [DOI] [PubMed] [Google Scholar]
  26. Yu H. H., Araj H. H., Ralls S. A., Kolodkin A. L. The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron. 1998 Feb;20(2):207–220. doi: 10.1016/s0896-6273(00)80450-x. [DOI] [PubMed] [Google Scholar]
  27. Yu H. H., Kolodkin A. L. Semaphorin signaling: a little less per-plexin. Neuron. 1999 Jan;22(1):11–14. doi: 10.1016/s0896-6273(00)80672-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES