Skip to main content
Genetics logoLink to Genetics
. 2000 Oct;156(2):775–783. doi: 10.1093/genetics/156.2.775

Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive.

R LeMaire-Adkins 1, P A Hunt 1
PMCID: PMC1461275  PMID: 11014823

Abstract

A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species.

Full Text

The Full Text of this article is available as a PDF (258.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agulnik S. I., Agulnik A. I., Ruvinsky A. O. Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1. Genet Res. 1990 Apr;55(2):97–100. doi: 10.1017/s0016672300025325. [DOI] [PubMed] [Google Scholar]
  2. Agulnik S. I., Sabantsev I. D., Orlova G. V., Ruvinsky A. O. Meiotic drive on aberrant chromosome 1 in the mouse is determined by a linked distorter. Genet Res. 1993 Apr;61(2):91–96. doi: 10.1017/s0016672300031189. [DOI] [PubMed] [Google Scholar]
  3. Agulnik S. I., Sabantsev I. D., Ruvinsky A. O. Effect of sperm genotype on chromatid segregation in female mice heterozygous for aberrant chromosome 1. Genet Res. 1993 Apr;61(2):97–100. doi: 10.1017/s0016672300031190. [DOI] [PubMed] [Google Scholar]
  4. Axelrod R., Hamilton W. D. The evolution of cooperation. Science. 1981 Mar 27;211(4489):1390–1396. doi: 10.1126/science.7466396. [DOI] [PubMed] [Google Scholar]
  5. Biddle F. G. Segregation distortion of X-linked marker genes in interspecific crosses between Mus musculus and M. spretus. Genome. 1987 Apr;29(2):389–392. doi: 10.1139/g87-067. [DOI] [PubMed] [Google Scholar]
  6. Brook J. D. X-chromosome segregation, maternal age and aneuploidy in the XO mouse. Genet Res. 1983 Feb;41(1):85–95. doi: 10.1017/s001667230002108x. [DOI] [PubMed] [Google Scholar]
  7. Day T., Taylor P. D. Chromosomal drive and the evolution of meiotic nondisjunction and trisomy in humans. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2361–2365. doi: 10.1073/pnas.95.5.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Disteche C. M., Gandy S. L., Adler D. A. Translocation and amplification of an X-chromosome DNA repeat in inbred strains of mice. Nucleic Acids Res. 1987 Jun 11;15(11):4393–4401. doi: 10.1093/nar/15.11.4393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eicher E. M., Hale D. W., Hunt P. A., Lee B. K., Tucker P. K., King T. R., Eppig J. T., Washburn L. L. The mouse Y* chromosome involves a complex rearrangement, including interstitial positioning of the pseudoautosomal region. Cytogenet Cell Genet. 1991;57(4):221–230. doi: 10.1159/000133152. [DOI] [PubMed] [Google Scholar]
  10. Eicher E. M., Washburn L. L. Assignment of genes to regions of mouse chromosomes. Proc Natl Acad Sci U S A. 1978 Feb;75(2):946–950. doi: 10.1073/pnas.75.2.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hassold T., Abruzzo M., Adkins K., Griffin D., Merrill M., Millie E., Saker D., Shen J., Zaragoza M. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen. 1996;28(3):167–175. doi: 10.1002/(SICI)1098-2280(1996)28:3<167::AID-EM2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  12. Hunt P. A. Survival of XO mouse fetuses: effect of parental origin of the X chromosome or uterine environment? Development. 1991 Apr;111(4):1137–1141. doi: 10.1242/dev.111.4.1137. [DOI] [PubMed] [Google Scholar]
  13. Hunt P., LeMaire R., Embury P., Sheean L., Mroz K. Analysis of chromosome behavior in intact mammalian oocytes: monitoring the segregation of a univalent chromosome during female meiosis. Hum Mol Genet. 1995 Nov;4(11):2007–2012. doi: 10.1093/hmg/4.11.2007. [DOI] [PubMed] [Google Scholar]
  14. Justice M. J., Siracusa L. D., Gilbert D. J., Heisterkamp N., Groffen J., Chada K., Silan C. M., Copeland N. G., Jenkins N. A. A genetic linkage map of mouse chromosome 10: localization of eighteen molecular markers using a single interspecific backcross. Genetics. 1990 Aug;125(4):855–866. doi: 10.1093/genetics/125.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaufman M. H. Non-random segregation during mammalian oogenesis. Nature. 1972 Aug 25;238(5365):465–466. doi: 10.1038/238465a0. [DOI] [PubMed] [Google Scholar]
  16. Lane P. W., Davisson M. T. Patchy fur (Paf), a semidominant X-linked gene associated with a high level of X-Y nondisjunction in male mice. J Hered. 1990 Jan-Feb;81(1):43–50. doi: 10.1093/oxfordjournals.jhered.a110923. [DOI] [PubMed] [Google Scholar]
  17. LeMaire-Adkins R., Radke K., Hunt P. A. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol. 1997 Dec 29;139(7):1611–1619. doi: 10.1083/jcb.139.7.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Luthardt F. W. Cytogenetic analysis of oocytes and early preimplantation embryos from XO mice. Dev Biol. 1976 Nov;54(1):73–81. doi: 10.1016/0012-1606(76)90287-6. [DOI] [PubMed] [Google Scholar]
  19. Montagutelli X., Turner R., Nadeau J. H. Epistatic control of non-Mendelian inheritance in mouse interspecific crosses. Genetics. 1996 Aug;143(4):1739–1752. doi: 10.1093/genetics/143.4.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pacchierotti F., Tiveron C., Mailhes J. B., Davisson M. T. Susceptibility to vinblastine-induced aneuploidy and preferential chromosome segregation during meiosis I in Robertsonian heterozygous mice. Teratog Carcinog Mutagen. 1995;15(5):217–230. doi: 10.1002/tcm.1770150502. [DOI] [PubMed] [Google Scholar]
  21. Pardo-Manual de Villena F., Slamka C., Fonseca M., Naumova A. K., Paquette J., Pannunzio P., Smith M., Verner A., Morgan K., Sapienza C. Transmission-ratio distortion through F1 females at chromosome 11 loci linked to Om in the mouse DDK syndrome. Genetics. 1996 Apr;142(4):1299–1304. doi: 10.1093/genetics/142.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pardo-Manuel de Villena F., de la Casa-Esperon E., Briscoe T. L., Sapienza C. A genetic test to determine the origin of maternal transmission ratio distortion. Meiotic drive at the mouse Om locus. Genetics. 2000 Jan;154(1):333–342. doi: 10.1093/genetics/154.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rhoades M. M., Dempsey E. The Effect of Abnormal Chromosome 10 on Preferential Segregation and Crossing over in Maize. Genetics. 1966 May;53(5):989–1020. doi: 10.1093/genetics/53.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rieder C. L., Cole R. Chromatid cohesion during mitosis: lessons from meiosis. J Cell Sci. 1999 Aug;112(Pt 16):2607–2613. doi: 10.1242/jcs.112.16.2607. [DOI] [PubMed] [Google Scholar]
  25. Ruvinsky A. Meiotic drive in female mice: an essay. Mamm Genome. 1995 May;6(5):315–320. doi: 10.1007/BF00364793. [DOI] [PubMed] [Google Scholar]
  26. Sakurada K., Omoe K., Endo A. Increased incidence of unpartnered single chromatids in metaphase II oocytes in 39,X(XO) mice. Experientia. 1994 May 15;50(5):502–505. doi: 10.1007/BF01920758. [DOI] [PubMed] [Google Scholar]
  27. Silver L. M. The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends Genet. 1993 Jul;9(7):250–254. doi: 10.1016/0168-9525(93)90090-5. [DOI] [PubMed] [Google Scholar]
  28. Siracusa L. D., Alvord W. G., Bickmore W. A., Jenkins N. A., Copeland N. G. Interspecific backcross mice show sex-specific differences in allelic inheritance. Genetics. 1991 Aug;128(4):813–821. doi: 10.1093/genetics/128.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thornhill A. R., Burgoyne P. S. A paternally imprinted X chromosome retards the development of the early mouse embryo. Development. 1993 May;118(1):171–174. doi: 10.1242/dev.118.1.171. [DOI] [PubMed] [Google Scholar]
  30. Watanabe Y., Nurse P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature. 1999 Jul 29;400(6743):461–464. doi: 10.1038/22774. [DOI] [PubMed] [Google Scholar]
  31. Zwick M. E., Salstrom J. L., Langley C. H. Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics. 1999 Aug;152(4):1605–1614. doi: 10.1093/genetics/152.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES