Skip to main content
Genetics logoLink to Genetics
. 2000 Oct;156(2):571–578. doi: 10.1093/genetics/156.2.571

Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae.

B D Harfe 1, S Jinks-Robertson 1
PMCID: PMC1461279  PMID: 11014807

Abstract

DNA polymerase slippage occurs frequently in tracts of a tandemly repeated nucleotide, and such slippage events can be genetically detected as frameshift mutations. In long mononucleotide runs, most frameshift intermediates are repaired by the postreplicative mismatch repair (MMR) machinery, rather than by the exonucleolytic proofreading activity of DNA polymerase. Although mononucleotide runs are hotspots for polymerase slippage events, it is not known whether the composition of a run and the surrounding context affect the frequency of slippage or the efficiency of MMR. To address these issues, 10-nucleotide (10N) runs were inserted into the yeast LYS2 gene to create +1 frameshift alleles. Slippage events within these runs were detected as Lys(+) revertants. 10G or 10C runs were found to be more unstable than 10A or 10T runs, but neither the frequency of polymerase slippage nor the overall efficiency of MMR was greatly influenced by sequence context. Although complete elimination of MMR activity (msh2 mutants) affected all runs similarly, analyses of reversion rates in msh3 and msh6 mutants revealed distinct specificities of the yeast Msh2p-Msh3p and Msh2p-Msh6p mismatch binding complexes in the repair of frameshift intermediates in different sequence contexts.

Full Text

The Full Text of this article is available as a PDF (212.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bebenek K., Kunkel T. A. Frameshift errors initiated by nucleotide misincorporation. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4946–4950. doi: 10.1073/pnas.87.13.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bessman M. J., Reha-Krantz L. J. Studies on the biochemical basis of spontaneous mutation. V. Effect of temperature on mutation frequency. J Mol Biol. 1977 Oct 15;116(1):115–123. doi: 10.1016/0022-2836(77)90122-x. [DOI] [PubMed] [Google Scholar]
  3. Chattoo B. B., Sherman F., Azubalis D. A., Fjellstedt T. A., Mehnert D., Ogur M. Selection of lys2 Mutants of the Yeast SACCHAROMYCES CEREVISIAE by the Utilization of alpha-AMINOADIPATE. Genetics. 1979 Sep;93(1):51–65. doi: 10.1093/genetics/93.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen W., Jinks-Robertson S. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol Cell Biol. 1998 Nov;18(11):6525–6537. doi: 10.1128/mcb.18.11.6525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flores-Rozas H., Kolodner R. D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12404–12409. doi: 10.1073/pnas.95.21.12404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freudenreich C. H., Stavenhagen J. B., Zakian V. A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol. 1997 Apr;17(4):2090–2098. doi: 10.1128/mcb.17.4.2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodman M. F., Fygenson K. D. DNA polymerase fidelity: from genetics toward a biochemical understanding. Genetics. 1998 Apr;148(4):1475–1482. doi: 10.1093/genetics/148.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greene C. N., Jinks-Robertson S. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Mol Cell Biol. 1997 May;17(5):2844–2850. doi: 10.1128/mcb.17.5.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harfe B. D., Jinks-Robertson S. Removal of frameshift intermediates by mismatch repair proteins in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jul;19(7):4766–4773. doi: 10.1128/mcb.19.7.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harfe B. D., Minesinger B. K., Jinks-Robertson S. Discrete in vivo roles for the MutL homologs Mlh2p and Mlh3p in the removal of frameshift intermediates in budding yeast. Curr Biol. 2000 Feb 10;10(3):145–148. doi: 10.1016/s0960-9822(00)00314-6. [DOI] [PubMed] [Google Scholar]
  11. Kolodner R. D., Marsischky G. T. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 1999 Feb;9(1):89–96. doi: 10.1016/s0959-437x(99)80013-6. [DOI] [PubMed] [Google Scholar]
  12. Kroutil L. C., Register K., Bebenek K., Kunkel T. A. Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry. 1996 Jan 23;35(3):1046–1053. doi: 10.1021/bi952178h. [DOI] [PubMed] [Google Scholar]
  13. Macpherson P., Humbert O., Karran P. Frameshift mismatch recognition by the human MutS alpha complex. Mutat Res. 1998 Jul;408(1):55–66. doi: 10.1016/s0921-8777(98)00017-2. [DOI] [PubMed] [Google Scholar]
  14. Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. doi: 10.1101/gad.10.4.407. [DOI] [PubMed] [Google Scholar]
  15. Marsischky G. T., Kolodner R. D. Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. J Biol Chem. 1999 Sep 17;274(38):26668–26682. doi: 10.1074/jbc.274.38.26668. [DOI] [PubMed] [Google Scholar]
  16. Morey N. J., Greene C. N., Jinks-Robertson S. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. Genetics. 2000 Jan;154(1):109–120. doi: 10.1093/genetics/154.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Prolla T. A., Christie D. M., Liskay R. M. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol. 1994 Jan;14(1):407–415. doi: 10.1128/mcb.14.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prolla T. A., Pang Q., Alani E., Kolodner R. D., Liskay R. M. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science. 1994 Aug 19;265(5175):1091–1093. doi: 10.1126/science.8066446. [DOI] [PubMed] [Google Scholar]
  19. Rothstein R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 1991;194:281–301. doi: 10.1016/0076-6879(91)94022-5. [DOI] [PubMed] [Google Scholar]
  20. Sagher D., Hsu A., Strauss B. Stabilization of the intermediate in frameshift mutation. Mutat Res. 1999 Jan 25;423(1-2):73–77. doi: 10.1016/s0027-5107(98)00227-9. [DOI] [PubMed] [Google Scholar]
  21. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  22. Streisinger G., Owen J. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics. 1985 Apr;109(4):633–659. doi: 10.1093/genetics/109.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tran H. T., Degtyareva N. P., Koloteva N. N., Sugino A., Masumoto H., Gordenin D. A., Resnick M. A. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol. 1995 Oct;15(10):5607–5617. doi: 10.1128/mcb.15.10.5607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tran H. T., Keen J. D., Kricker M., Resnick M. A., Gordenin D. A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. 1997 May;17(5):2859–2865. doi: 10.1128/mcb.17.5.2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang T. F., Kleckner N., Hunter N. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13914–13919. doi: 10.1073/pnas.96.24.13914. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES