Skip to main content
Genetics logoLink to Genetics
. 2000 Oct;156(2):847–854. doi: 10.1093/genetics/156.2.847

Computational and experimental characterization of physically clustered simple sequence repeats in plants.

L Cardle 1, L Ramsay 1, D Milbourne 1, M Macaulay 1, D Marshall 1, R Waugh 1
PMCID: PMC1461288  PMID: 11014830

Abstract

The type and frequency of simple sequence repeats (SSRs) in plant genomes was investigated using the expanding quantity of DNA sequence data deposited in public databases. In Arabidopsis, 306 genomic DNA sequences longer than 10 kb and 36,199 EST sequences were searched for all possible mono- to pentanucleotide repeats. The average frequency of SSRs was one every 6.04 kb in genomic DNA, decreasing to one every 14 kb in ESTs. SSR frequency and type differed between coding, intronic, and intergenic DNA. Similar frequencies were found in other plant species. On the basis of these findings, an approach is proposed and demonstrated for the targeted isolation of single or multiple, physically clustered SSRs linked to any gene that has been mapped using low-copy DNA-based markers. The approach involves sample sequencing a small number of subclones of selected randomly sheared large insert DNA clones (e.g., BACs). It is shown to be both feasible and practicable, given the probability of fortuitously sequencing through an SSR. The approach is demonstrated in barley where sample sequencing 34 subclones of a single BAC selected by hybridization to the Big1 gene revealed three SSRs. These allowed Big1 to be located at the top of barley linkage group 6HS.

Full Text

The Full Text of this article is available as a PDF (221.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akkaya M. S., Bhagwat A. A., Cregan P. B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics. 1992 Dec;132(4):1131–1139. doi: 10.1093/genetics/132.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antezana M. A., Kreitman M. The nonrandom location of synonymous codons suggests that reading frame-independent forces have patterned codon preferences. J Mol Evol. 1999 Jul;49(1):36–43. doi: 10.1007/pl00006532. [DOI] [PubMed] [Google Scholar]
  4. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  5. Bureau T. E., Wessler S. R. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell. 1994 Jun;6(6):907–916. doi: 10.1105/tpc.6.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R., Stivers D. N., Su B., Zhong Y., Budowle B. The utility of short tandem repeat loci beyond human identification: implications for development of new DNA typing systems. Electrophoresis. 1999 Jun;20(8):1682–1696. doi: 10.1002/(SICI)1522-2683(19990101)20:8<1682::AID-ELPS1682>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  7. Cox R., Mirkin S. M. Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5237–5242. doi: 10.1073/pnas.94.10.5237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  9. Dietrich W. F., Miller J., Steen R., Merchant M. A., Damron-Boles D., Husain Z., Dredge R., Daly M. J., Ingalls K. A., O'Connor T. J. A comprehensive genetic map of the mouse genome. Nature. 1996 Mar 14;380(6570):149–152. doi: 10.1038/380149a0. [DOI] [PubMed] [Google Scholar]
  10. Echt C. S., May-Marquardt P. Survey of microsatellite DNA in pine. Genome. 1997 Feb;40(1):9–17. doi: 10.1139/g97-002. [DOI] [PubMed] [Google Scholar]
  11. Edwards K. J., Barker J. H., Daly A., Jones C., Karp A. Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques. 1996 May;20(5):758–760. doi: 10.2144/96205bm04. [DOI] [PubMed] [Google Scholar]
  12. Hamada H., Kakunaga T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature. 1982 Jul 22;298(5872):396–398. doi: 10.1038/298396a0. [DOI] [PubMed] [Google Scholar]
  13. Lagercrantz U., Ellegren H., Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res. 1993 Mar 11;21(5):1111–1115. doi: 10.1093/nar/21.5.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Manninen I., Schulman A. H. BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol. 1993 Aug;22(5):829–846. doi: 10.1007/BF00027369. [DOI] [PubMed] [Google Scholar]
  15. Milbourne D., Meyer R. C., Collins A. J., Ramsay L. D., Gebhardt C., Waugh R. Isolation, characterisation and mapping of simple sequence repeat loci in potato. Mol Gen Genet. 1998 Aug;259(3):233–245. doi: 10.1007/s004380050809. [DOI] [PubMed] [Google Scholar]
  16. Morgante M., Olivieri A. M. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993 Jan;3(1):175–182. [PubMed] [Google Scholar]
  17. Paglia G. P., Olivieri A. M., Morgante M. Towards second-generation STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.). Mol Gen Genet. 1998 Jun;258(5):466–478. doi: 10.1007/s004380050757. [DOI] [PubMed] [Google Scholar]
  18. Panaud O., Chen X., McCouch S. R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet. 1996 Oct 16;252(5):597–607. doi: 10.1007/BF02172406. [DOI] [PubMed] [Google Scholar]
  19. Panstruga R., Büschges R., Piffanelli P., Schulze-Lefert P. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 1998 Feb 15;26(4):1056–1062. doi: 10.1093/nar/26.4.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ramsay L., Macaulay M., Cardle L., Morgante M., degli Ivanissevich S., Maestri E., Powell W., Waugh R. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 1999 Feb;17(4):415–425. doi: 10.1046/j.1365-313x.1999.00392.x. [DOI] [PubMed] [Google Scholar]
  21. Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P., Ganal M. W. A microsatellite map of wheat. Genetics. 1998 Aug;149(4):2007–2023. doi: 10.1093/genetics/149.4.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Röder M. S., Plaschke J., König S. U., Börner A., Sorrells M. E., Tanksley S. D., Ganal M. W. Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet. 1995 Feb 6;246(3):327–333. doi: 10.1007/BF00288605. [DOI] [PubMed] [Google Scholar]
  23. Stallings R. L., Ford A. F., Nelson D., Torney D. C., Hildebrand C. E., Moyzis R. K. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics. 1991 Jul;10(3):807–815. doi: 10.1016/0888-7543(91)90467-s. [DOI] [PubMed] [Google Scholar]
  24. Sverdlov V. E., Dukhanina O. I., Hoebee B., Rapp J. P. Linkage mapping of fifty-eight new rat microsatellite markers. Mamm Genome. 1998 Oct;9(10):816–821. doi: 10.1007/s003359900873. [DOI] [PubMed] [Google Scholar]
  25. Weising K., Weigand F., Driesel A. J., Kahl G., Zischler H., Epplen J. T. Polymorphic simple GATA/GACA repeats in plant genomes. Nucleic Acids Res. 1989 Dec 11;17(23):10128–10128. doi: 10.1093/nar/17.23.10128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu K. S., Tanksley S. D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet. 1993 Oct;241(1-2):225–235. doi: 10.1007/BF00280220. [DOI] [PubMed] [Google Scholar]
  27. Zhao X., Kochert G. Characterization and genetic mapping of a short, highly repeated, interspersed DNA sequence from rice (Oryza sativa L.). Mol Gen Genet. 1992 Feb;231(3):353–359. doi: 10.1007/BF00292702. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES