Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1309–1322. doi: 10.1093/genetics/156.3.1309

Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis.

P Hurme 1, M J Sillanpää 1, E Arjas 1, T Repo 1, O Savolainen 1
PMCID: PMC1461308  PMID: 11063704

Abstract

We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect.

Full Text

The Full Text of this article is available as a PDF (319.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradshaw H. D., Jr, Stettler R. F. Molecular genetics of growth and development in populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics. 1995 Feb;139(2):963–973. doi: 10.1093/genetics/139.2.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chakravarti A., Lasher L. K., Reefer J. E. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics. 1991 May;128(1):175–182. doi: 10.1093/genetics/128.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke J. H., Mithen R., Brown J. K., Dean C. QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet. 1995 Aug 21;248(3):278–286. doi: 10.1007/BF02191594. [DOI] [PubMed] [Google Scholar]
  4. Frewen B. E., Chen T. H., Howe G. T., Davis J., Rohde A., Boerjan W., Bradshaw H. D., Jr Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. Genetics. 2000 Feb;154(2):837–845. doi: 10.1093/genetics/154.2.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., Sargeant L. S., Sorensen A., Steele M. R., Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jansen R. C. A general Monte Carlo method for mapping multiple quantitative trait loci. Genetics. 1996 Jan;142(1):305–311. doi: 10.1093/genetics/142.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jansen R. C., Johnson D. L., Van Arendonk J. A. A mixture model approach to the mapping of quantitative trait loci in complex populations with an application to multiple cattle families. Genetics. 1998 Jan;148(1):391–399. doi: 10.1093/genetics/148.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jensen C. S., Sheehan N. Problems with determination of noncommunicating classes for Monte Carlo Markov chain applications in pedigree analysis. Biometrics. 1998 Jun;54(2):416–425. [PubMed] [Google Scholar]
  12. Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
  13. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  15. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mackay T. F., Langley C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature. 1990 Nov 1;348(6296):64–66. doi: 10.1038/348064a0. [DOI] [PubMed] [Google Scholar]
  17. Mackay T. F. The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system. Trends Genet. 1995 Dec;11(12):464–470. doi: 10.1016/s0168-9525(00)89154-4. [DOI] [PubMed] [Google Scholar]
  18. Melchinger A. E., Utz H. F., Schön C. C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics. 1998 May;149(1):383–403. doi: 10.1093/genetics/149.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orr H. A. Adaptation and the cost of complexity. Evolution. 2000 Feb;54(1):13–20. doi: 10.1111/j.0014-3820.2000.tb00002.x. [DOI] [PubMed] [Google Scholar]
  20. Sheehan N., Thomas A. On the irreducibility of a Markov chain defined on a space of genotype configurations by a sampling scheme. Biometrics. 1993 Mar;49(1):163–175. [PubMed] [Google Scholar]
  21. Shoemaker J. S., Painter I. S., Weir B. S. Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet. 1999 Sep;15(9):354–358. doi: 10.1016/s0168-9525(99)01751-5. [DOI] [PubMed] [Google Scholar]
  22. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wijsman E. M. A deductive method of haplotype analysis in pedigrees. Am J Hum Genet. 1987 Sep;41(3):356–373. [PMC free article] [PubMed] [Google Scholar]
  25. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu R. L. Mapping quantitative trait loci by genotyping haploid tissues. Genetics. 1999 Aug;152(4):1741–1752. doi: 10.1093/genetics/152.4.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES