Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Sep 15;24(18):3507–3513. doi: 10.1093/nar/24.18.3507

Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family.

H F Rosenberg 1, K D Dyer 1
PMCID: PMC146131  PMID: 8836175

Abstract

The discovery of Ribonuclease k6 (RNase k6) was an unexpected result of our ongoing efforts to trace the evolutionary history of the ribonuclease gene family. The open reading frame of RNase k6, amplified from human genomic DNA, encodes a 150 amino acid polypeptide with eight cysteines and histidine and lysine residues corresponding to those found in the active site of the prototype, ribonuclease A. The single-copy gene encoding RNase k6 maps to human chromosome 14 and orthologous sequences were detected in both primate and non-primate mammalian species. A single mRNA transcript (1.5 kb) was detected in all human tissues tested, with lung representing the most abundant source. At the cellular level, transcripts encoding RNase k6 were detected in normal human monocytes and neutrophils (but not in eosinophils) suggesting a role for this ribonuclease in host defense. Of the five previously identified human ribonucleases of this group, RNase k6 is most closely related to eosinophil-derived neurotoxin (EDN), with 47% amino acid sequence identity; slight cross-reactivity between RNase k6 and EDN was observed on Western blots probed with polyclonal anti-EDN antiserum. The catalytic constants determined, Km = 5.0 microM and Kcat = 0.13 s-1, indicate that recombinant RNase k6 has approximately 40-fold less ribonuclease activity than recombinant EDN. The identification and characterization of RNase k6 has extended the ribonuclease gene family and suggests the possibility that there are others awaiting discovery.

Full Text

The Full Text of this article is available as a PDF (138.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardelt W., Mikulski S. M., Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem. 1991 Jan 5;266(1):245–251. [PubMed] [Google Scholar]
  2. Barnard E. A. Biological function of pancreatic ribonuclease. Nature. 1969 Jan 25;221(5178):340–344. doi: 10.1038/221340a0. [DOI] [PubMed] [Google Scholar]
  3. Beintema J. J., Hofsteenge J., Iwama M., Morita T., Ohgi K., Irie M., Sugiyama R. H., Schieven G. L., Dekker C. A., Glitz D. G. Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry. 1988 Jun 14;27(12):4530–4538. doi: 10.1021/bi00412a046. [DOI] [PubMed] [Google Scholar]
  4. Beintema J. J., Wietzes P., Weickmann J. L., Glitz D. G. The amino acid sequence of human pancreatic ribonuclease. Anal Biochem. 1984 Jan;136(1):48–64. doi: 10.1016/0003-2697(84)90306-3. [DOI] [PubMed] [Google Scholar]
  5. Carsana A., Confalone E., Palmieri M., Libonati M., Furia A. Structure of the bovine pancreatic ribonuclease gene: the unique intervening sequence in the 5' untranslated region contains a promoter-like element. Nucleic Acids Res. 1988 Jun 24;16(12):5491–5502. doi: 10.1093/nar/16.12.5491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Confalone E., Beintema J. J., Sasso M. P., Carsana A., Palmieri M., Vento M. T., Furia A. Molecular evolution of genes encoding ribonucleases in ruminant species. J Mol Evol. 1995 Dec;41(6):850–858. doi: 10.1007/BF00173164. [DOI] [PubMed] [Google Scholar]
  7. D'Alessio G., Di Donato A., Parente A., Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991 Mar;16(3):104–106. doi: 10.1016/0968-0004(91)90042-t. [DOI] [PubMed] [Google Scholar]
  8. Dostál J., Matousek J. Isolation and some chemical properties of aspermatogenic substance from bull seminal vesicle fluid. J Reprod Fertil. 1973 May;33(2):263–274. doi: 10.1530/jrf.0.0330263. [DOI] [PubMed] [Google Scholar]
  9. Fett J. W., Strydom D. J., Lobb R. R., Alderman E. M., Bethune J. L., Riordan J. F., Vallee B. L. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985 Sep 24;24(20):5480–5486. doi: 10.1021/bi00341a030. [DOI] [PubMed] [Google Scholar]
  10. Hamann K. J., Ten R. M., Loegering D. A., Jenkins R. B., Heise M. T., Schad C. R., Pease L. R., Gleich G. J., Barker R. L. Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics. 1990 Aug;7(4):535–546. doi: 10.1016/0888-7543(90)90197-3. [DOI] [PubMed] [Google Scholar]
  11. Haugg M., Schein C. H. The DNA sequences of the human and hamster secretory ribonucleases determined with the polymerase chain reaction (PCR). Nucleic Acids Res. 1992 Feb 11;20(3):612–612. doi: 10.1093/nar/20.3.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hu G. F., Strydom D. J., Fett J. W., Riordan J. F., Vallee B. L. Actin is a binding protein for angiogenin. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1217–1221. doi: 10.1073/pnas.90.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iggo R., Gough A., Xu W., Lane D. P., Spurr N. K. Chromosome mapping of the human gene encoding the 68-kDa nuclear antigen (p68) by using the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6211–6214. doi: 10.1073/pnas.86.16.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Irie M., Nitta R., Ohgi K., Niwata Y., Watanabe H., Iwama M., Beintema J. J., Sanda A., Takizawa Y. Primary structure of a non-secretory ribonuclease from bovine kidney. J Biochem. 1988 Aug;104(2):289–296. doi: 10.1093/oxfordjournals.jbchem.a122460. [DOI] [PubMed] [Google Scholar]
  15. Kim J. S., Soucek J., Matousek J., Raines R. T. Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Biochem J. 1995 Jun 1;308(Pt 2):547–550. doi: 10.1042/bj3080547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laccetti P., Portella G., Mastronicola M. R., Russo A., Piccoli R., D'Alessio G., Vecchio G. In vivo and in vitro growth-inhibitory effect of bovine seminal ribonuclease on a system of rat thyroid epithelial transformed cells and tumors. Cancer Res. 1992 Sep 1;52(17):4582–4586. [PubMed] [Google Scholar]
  17. Mastronicola M. R., Piccoli R., D'Alessio G. Key extracellular and intracellular steps in the antitumor action of seminal ribonuclease. Eur J Biochem. 1995 May 15;230(1):242–249. doi: 10.1111/j.1432-1033.1995.tb20557.x. [DOI] [PubMed] [Google Scholar]
  18. Mikulski S. M., Ardelt W., Shogen K., Bernstein E. H., Menduke H. Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos. J Natl Cancer Inst. 1990 Jan 17;82(2):151–153. doi: 10.1093/jnci/82.2.151-a. [DOI] [PubMed] [Google Scholar]
  19. Molina H. A., Kierszenbaum F., Hamann K. J., Gleich G. J. Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. Am J Trop Med Hyg. 1988 Mar;38(2):327–334. doi: 10.4269/ajtmh.1988.38.327. [DOI] [PubMed] [Google Scholar]
  20. Moroianu J., Riordan J. F. Identification of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1765–1772. doi: 10.1006/bbrc.1994.2391. [DOI] [PubMed] [Google Scholar]
  21. Moroianu J., Riordan J. F. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1677–1681. doi: 10.1073/pnas.91.5.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Newton D. L., Walbridge S., Mikulski S. M., Ardelt W., Shogen K., Ackerman S. J., Rybak S. M., Youle R. J. Toxicity of an antitumor ribonuclease to Purkinje neurons. J Neurosci. 1994 Feb;14(2):538–544. doi: 10.1523/JNEUROSCI.14-02-00538.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nitta K., Ozaki K., Ishikawa M., Furusawa S., Hosono M., Kawauchi H., Sasaki K., Takayanagi Y., Tsuiki S., Hakomori S. Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res. 1994 Feb 15;54(4):920–927. [PubMed] [Google Scholar]
  24. Rosenberg H. F., Ackerman S. J., Tenen D. G. Characterization of a distinct binding site for the prokaryotic chaperone, GroEL, on a human granulocyte ribonuclease. J Biol Chem. 1993 Feb 25;268(6):4499–4503. [PubMed] [Google Scholar]
  25. Rosenberg H. F., Ackerman S. J., Tenen D. G. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med. 1989 Jul 1;170(1):163–176. doi: 10.1084/jem.170.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rosenberg H. F., Dyer K. D. Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem. 1995 Sep 15;270(37):21539–21544. doi: 10.1074/jbc.270.37.21539. [DOI] [PubMed] [Google Scholar]
  27. Rosenberg H. F., Dyer K. D. Human ribonuclease 4 (RNase 4): coding sequence, chromosomal localization and identification of two distinct transcripts in human somatic tissues. Nucleic Acids Res. 1995 Nov 11;23(21):4290–4295. doi: 10.1093/nar/23.21.4290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rosenberg H. F., Dyer K. D., Tiffany H. L., Gonzalez M. Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet. 1995 Jun;10(2):219–223. doi: 10.1038/ng0695-219. [DOI] [PubMed] [Google Scholar]
  29. Rosenberg H. F. Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem. 1995 Apr 7;270(14):7876–7881. doi: 10.1074/jbc.270.14.7876. [DOI] [PubMed] [Google Scholar]
  30. Rosenberg H. F., Tenen D. G., Ackerman S. J. Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4460–4464. doi: 10.1073/pnas.86.12.4460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rybak S. M., Fett J. W., Yao Q. Z., Vallee B. L. Angiogenin mRNA in human tumor and normal cells. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1240–1248. doi: 10.1016/0006-291x(87)90781-9. [DOI] [PubMed] [Google Scholar]
  32. Samuelson L. C., Wiebauer K., Howard G., Schmid R. M., Koeplin D., Meisler M. H. Isolation of the murine ribonuclease gene Rib-1: structure and tissue specific expression in pancreas and parotid gland. Nucleic Acids Res. 1991 Dec 25;19(24):6935–6941. doi: 10.1093/nar/19.24.6935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sasso M. P., Carsana A., Confalone E., Cosi C., Sorrentino S., Viola M., Palmieri M., Russo E., Furia A. Molecular cloning of the gene encoding the bovine brain ribonuclease and its expression in different regions of the brain. Nucleic Acids Res. 1991 Dec 11;19(23):6469–6474. doi: 10.1093/nar/19.23.6469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saxena S. K., Rybak S. M., Davey R. T., Jr, Youle R. J., Ackerman E. J. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem. 1992 Oct 25;267(30):21982–21986. [PubMed] [Google Scholar]
  35. Seno M., Futami J., Kosaka M., Seno S., Yamada H. Nucleotide sequence encoding human pancreatic ribonuclease. Biochim Biophys Acta. 1994 Aug 2;1218(3):466–468. doi: 10.1016/0167-4781(94)90208-9. [DOI] [PubMed] [Google Scholar]
  36. Shapiro R., Fett J. W., Strydom D. J., Vallee B. L. Isolation and characterization of a human colon carcinoma-secreted enzyme with pancreatic ribonuclease-like activity. Biochemistry. 1986 Nov 18;25(23):7255–7264. doi: 10.1021/bi00371a002. [DOI] [PubMed] [Google Scholar]
  37. Shapiro R., Riordan J. F., Vallee B. L. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry. 1986 Jun 17;25(12):3527–3532. doi: 10.1021/bi00360a008. [DOI] [PubMed] [Google Scholar]
  38. Slifman N. R., Loegering D. A., McKean D. J., Gleich G. J. Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol. 1986 Nov 1;137(9):2913–2917. [PubMed] [Google Scholar]
  39. Sorrentino S., Glitz D. G., Hamann K. J., Loegering D. A., Checkel J. L., Gleich G. J. Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity. J Biol Chem. 1992 Jul 25;267(21):14859–14865. [PubMed] [Google Scholar]
  40. St Clair D. K., Rybak S. M., Riordan J. F., Vallee B. L. Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8330–8334. doi: 10.1073/pnas.84.23.8330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Titani K., Takio K., Kuwada M., Nitta K., Sakakibara F., Kawauchi H., Takayanagi G., Hakomori S. Amino acid sequence of sialic acid binding lectin from frog (Rana catesbeiana) eggs. Biochemistry. 1987 Apr 21;26(8):2189–2194. doi: 10.1021/bi00382a018. [DOI] [PubMed] [Google Scholar]
  42. Vescia S., Tramontano D., Augusti-Tocco G., D'Alessio G. In vitro studies on selective inhibition of tumor cell growth by seminal ribonuclease. Cancer Res. 1980 Oct;40(10):3740–3744. [PubMed] [Google Scholar]
  43. Watanabe H., Katoh H., Ishii M., Komoda Y., Sanda A., Takizawa Y., Ohgi K., Irie M. Primary structure of a ribonuclease from bovine brain. J Biochem. 1988 Dec;104(6):939–945. doi: 10.1093/oxfordjournals.jbchem.a122587. [DOI] [PubMed] [Google Scholar]
  44. Weiner H. L., Weiner L. H., Swain J. L. Tissue distribution and developmental expression of the messenger RNA encoding angiogenin. Science. 1987 Jul 17;237(4812):280–282. doi: 10.1126/science.2440105. [DOI] [PubMed] [Google Scholar]
  45. Weremowicz S., Fox E. A., Morton C. C., Vallee B. L. Localization of the human angiogenin gene to chromosome band 14q11, proximal to the T cell receptor alpha/delta locus. Am J Hum Genet. 1990 Dec;47(6):973–981. [PMC free article] [PubMed] [Google Scholar]
  46. Wu Y., Mikulski S. M., Ardelt W., Rybak S. M., Youle R. J. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem. 1993 May 15;268(14):10686–10693. [PubMed] [Google Scholar]
  47. Youle R. J., Wu Y. N., Mikulski S. M., Shogen K., Hamilton R. S., Newton D., D'Alessio G., Gravell M. RNase inhibition of human immunodeficiency virus infection of H9 cells. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6012–6016. doi: 10.1073/pnas.91.13.6012. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES