Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1035–1046. doi: 10.1093/genetics/156.3.1035

Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway.

T Inoue 1, J H Thomas 1
PMCID: PMC1461310  PMID: 11063683

Abstract

The dauer is a developmentally arrested alternative third larval stage of Caenorhabditis elegans. Entry into this state is regulated by environmental cues, including temperature, food, and the concentration of constitutively secreted dauer pheromone. Genetically, three parallel pathways have been found that regulate this process. Of these, the group 2 pathway, which includes the genes daf-1, daf-3, daf-4, daf-5, daf-7, daf-8, and daf-14, mediates the transduction of environmental signals through the ASI chemosensory neuron and encodes a TGF-beta-related signaling pathway. To identify additional genes that function in this pathway, we carried out a screen for suppressors of mutations in daf-1, daf-8, and daf-14. From the total of 36 mutations, seven complementation groups were identified. Three complementation groups correspond to the previously described genes daf-3, daf-5, and daf-12. Three correspond to novel genes scd-1, scd-2, and scd-3. Genetic analysis of these scd genes is presented here. A fourth complementation group was represented by a single mutation sa315, which affects the daf-2/age-1 insulin-related signaling pathway.

Full Text

The Full Text of this article is available as a PDF (326.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnby D. A., Link E. M., Vowels J. J., Tian H., Colacurcio P. L., Thomas J. H. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics. 2000 May;155(1):85–104. doi: 10.1093/genetics/155.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cassada R. C., Russell R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975 Oct;46(2):326–342. doi: 10.1016/0012-1606(75)90109-8. [DOI] [PubMed] [Google Scholar]
  4. Estevez M., Attisano L., Wrana J. L., Albert P. S., Massagué J., Riddle D. L. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature. 1993 Oct 14;365(6447):644–649. doi: 10.1038/365644a0. [DOI] [PubMed] [Google Scholar]
  5. Georgi L. L., Albert P. S., Riddle D. L. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell. 1990 May 18;61(4):635–645. doi: 10.1016/0092-8674(90)90475-t. [DOI] [PubMed] [Google Scholar]
  6. Gil E. B., Malone Link E., Liu L. X., Johnson C. D., Lees J. A. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2925–2930. doi: 10.1073/pnas.96.6.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golden J. W., Riddle D. L. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science. 1982 Nov 5;218(4572):578–580. doi: 10.1126/science.6896933. [DOI] [PubMed] [Google Scholar]
  8. Golden J. W., Riddle D. L. A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci U S A. 1984 Feb;81(3):819–823. doi: 10.1073/pnas.81.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Golden J. W., Riddle D. L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol. 1984 Apr;102(2):368–378. doi: 10.1016/0012-1606(84)90201-x. [DOI] [PubMed] [Google Scholar]
  10. Gottlieb S., Ruvkun G. daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics. 1994 May;137(1):107–120. doi: 10.1093/genetics/137.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
  12. Kimura K. D., Tissenbaum H. A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997 Aug 15;277(5328):942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
  13. Lin K., Dorman J. B., Rodan A., Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997 Nov 14;278(5341):1319–1322. doi: 10.1126/science.278.5341.1319. [DOI] [PubMed] [Google Scholar]
  14. Malone E. A., Inoue T., Thomas J. H. Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics. 1996 Jul;143(3):1193–1205. doi: 10.1093/genetics/143.3.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malone E. A., Thomas J. H. A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. Genetics. 1994 Mar;136(3):879–886. doi: 10.1093/genetics/136.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–791. doi: 10.1146/annurev.biochem.67.1.753. [DOI] [PubMed] [Google Scholar]
  17. Mihaylova V. T., Borland C. Z., Manjarrez L., Stern M. J., Sun H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7427–7432. doi: 10.1073/pnas.96.13.7427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morris J. Z., Tissenbaum H. A., Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996 Aug 8;382(6591):536–539. doi: 10.1038/382536a0. [DOI] [PubMed] [Google Scholar]
  19. Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997 Oct 30;389(6654):994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  20. Ogg S., Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell. 1998 Dec;2(6):887–893. doi: 10.1016/s1097-2765(00)80303-2. [DOI] [PubMed] [Google Scholar]
  21. Paradis S., Ailion M., Toker A., Thomas J. H., Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 1999 Jun 1;13(11):1438–1452. doi: 10.1101/gad.13.11.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paradis S., Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 1998 Aug 15;12(16):2488–2498. doi: 10.1101/gad.12.16.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Patterson G. I., Koweek A., Wong A., Liu Y., Ruvkun G. The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev. 1997 Oct 15;11(20):2679–2690. doi: 10.1101/gad.11.20.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ren P., Lim C. S., Johnsen R., Albert P. S., Pilgrim D., Riddle D. L. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science. 1996 Nov 22;274(5291):1389–1391. doi: 10.1126/science.274.5291.1389. [DOI] [PubMed] [Google Scholar]
  25. Riddle D. L., Swanson M. M., Albert P. S. Interacting genes in nematode dauer larva formation. Nature. 1981 Apr 23;290(5808):668–671. doi: 10.1038/290668a0. [DOI] [PubMed] [Google Scholar]
  26. Rouault J. P., Kuwabara P. E., Sinilnikova O. M., Duret L., Thierry-Mieg D., Billaud M. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr Biol. 1999 Mar 25;9(6):329–332. doi: 10.1016/s0960-9822(99)80143-2. [DOI] [PubMed] [Google Scholar]
  27. Savage C., Das P., Finelli A. L., Townsend S. R., Sun C. Y., Baird S. E., Padgett R. W. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):790–794. doi: 10.1073/pnas.93.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schackwitz W. S., Inoue T., Thomas J. H. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron. 1996 Oct;17(4):719–728. doi: 10.1016/s0896-6273(00)80203-2. [DOI] [PubMed] [Google Scholar]
  29. Thatcher J. D., Haun C., Okkema P. G. The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx. Development. 1999 Jan;126(1):97–107. doi: 10.1242/dev.126.1.97. [DOI] [PubMed] [Google Scholar]
  30. Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thomas J. H. Chemosensory regulation of development in C. elegans. Bioessays. 1993 Dec;15(12):791–797. doi: 10.1002/bies.950151204. [DOI] [PubMed] [Google Scholar]
  32. Vowels J. J., Thomas J. H. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics. 1992 Jan;130(1):105–123. doi: 10.1093/genetics/130.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES