Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1323–1337. doi: 10.1093/genetics/156.3.1323

Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes.

B K Zolman 1, A Yoder 1, B Bartel 1
PMCID: PMC1461311  PMID: 11063705

Abstract

Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA.

Full Text

The Full Text of this article is available as a PDF (374.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Nguyen M. D., Chow W., Theologis A. ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [corrected]. J Biol Chem. 1995 Aug 11;270(32):19093–19099. doi: 10.1074/jbc.270.32.19093. [DOI] [PubMed] [Google Scholar]
  2. Alonso J. M., Hirayama T., Roman G., Nourizadeh S., Ecker J. R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999 Jun 25;284(5423):2148–2152. doi: 10.1126/science.284.5423.2148. [DOI] [PubMed] [Google Scholar]
  3. Baes M., Gressens P., Baumgart E., Carmeliet P., Casteels M., Fransen M., Evrard P., Fahimi D., Declercq P. E., Collen D. A mouse model for Zellweger syndrome. Nat Genet. 1997 Sep;17(1):49–57. doi: 10.1038/ng0997-49. [DOI] [PubMed] [Google Scholar]
  4. Bartel B., Fink G. R. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6649–6653. doi: 10.1073/pnas.91.14.6649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  6. Bennett M. J., Marchant A., Green H. G., May S. T., Ward S. P., Millner P. A., Walker A. R., Schulz B., Feldmann K. A. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science. 1996 Aug 16;273(5277):948–950. doi: 10.1126/science.273.5277.948. [DOI] [PubMed] [Google Scholar]
  7. Bennett M. J., Marchant A., May S. T., Swarup R. Going the distance with auxin: unravelling the molecular basis of auxin transport. Philos Trans R Soc Lond B Biol Sci. 1998 Sep 29;353(1374):1511–1515. doi: 10.1098/rstb.1998.0306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bleecker A. B., Estelle M. A., Somerville C., Kende H. Insensitivity to Ethylene Conferred by a Dominant Mutation in Arabidopsis thaliana. Science. 1988 Aug 26;241(4869):1086–1089. doi: 10.1126/science.241.4869.1086. [DOI] [PubMed] [Google Scholar]
  9. Browse J., McCourt P. J., Somerville C. R. Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem. 1986 Jan;152(1):141–145. doi: 10.1016/0003-2697(86)90132-6. [DOI] [PubMed] [Google Scholar]
  10. Campisi L., Yang Y., Yi Y., Heilig E., Herman B., Cassista A. J., Allen D. W., Xiang H., Jack T. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 1999 Mar;17(6):699–707. doi: 10.1046/j.1365-313x.1999.00409.x. [DOI] [PubMed] [Google Scholar]
  11. Cary A. J., Liu W., Howell S. H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995 Apr;107(4):1075–1082. doi: 10.1104/pp.107.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Celenza J. L., Jr, Grisafi P. L., Fink G. R. A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev. 1995 Sep 1;9(17):2131–2142. doi: 10.1101/gad.9.17.2131. [DOI] [PubMed] [Google Scholar]
  13. Chen R., Hilson P., Sedbrook J., Rosen E., Caspar T., Masson P. H. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112–15117. doi: 10.1073/pnas.95.25.15112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clark D. G., Gubrium E. K., Barrett J. E., Nell T. A., Klee H. J. Root formation in ethylene-insensitive plants. Plant Physiol. 1999 Sep;121(1):53–60. doi: 10.1104/pp.121.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Clough S. J., Bent A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998 Dec;16(6):735–743. doi: 10.1046/j.1365-313x.1998.00343.x. [DOI] [PubMed] [Google Scholar]
  16. Davies R. T., Goetz D. H., Lasswell J., Anderson M. N., Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell. 1999 Mar;11(3):365–376. doi: 10.1105/tpc.11.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Erdmann R., Kunau W. H. A genetic approach to the biogenesis of peroxisomes in the yeast Saccharomyces cerevisiae. Cell Biochem Funct. 1992 Sep;10(3):167–174. doi: 10.1002/cbf.290100306. [DOI] [PubMed] [Google Scholar]
  18. Estelle M. Polar auxin transport. New support for an old model . Plant Cell. 1998 Nov;10(11):1775–1778. doi: 10.1105/tpc.10.11.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. FAWCETT C. H., WAIN R. L., WIGHTMAN F. The metabolism of 3-indolylalkanecarboxylic acids, and their amides, nitriles and methyl esters in plant tissues. Proc R Soc Lond B Biol Sci. 1960 May 17;152:231–254. doi: 10.1098/rspb.1960.0035. [DOI] [PubMed] [Google Scholar]
  20. Fujita H., Syono K. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiol. 1996 Dec;37(8):1094–1101. doi: 10.1093/oxfordjournals.pcp.a029059. [DOI] [PubMed] [Google Scholar]
  21. Gerhardt B. Fatty acid degradation in plants. Prog Lipid Res. 1992;31(4):417–446. doi: 10.1016/0163-7827(92)90004-3. [DOI] [PubMed] [Google Scholar]
  22. Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Guzmán P., Ecker J. R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990 Jun;2(6):513–523. doi: 10.1105/tpc.2.6.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hayashi H., De Bellis L., Ciurli A., Kondo M., Hayashi M., Nishimura M. A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. J Biol Chem. 1999 Apr 30;274(18):12715–12721. doi: 10.1074/jbc.274.18.12715. [DOI] [PubMed] [Google Scholar]
  25. Hayashi H., De Bellis L., Yamaguchi K., Kato A., Hayashi M., Nishimura M. Molecular characterization of a glyoxysomal long chain acyl-CoA oxidase that is synthesized as a precursor of higher molecular mass in pumpkin. J Biol Chem. 1998 Apr 3;273(14):8301–8307. doi: 10.1074/jbc.273.14.8301. [DOI] [PubMed] [Google Scholar]
  26. Hayashi M., Toriyama K., Kondo M., Nishimura M. 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell. 1998 Feb;10(2):183–195. doi: 10.1105/tpc.10.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hua J., Meyerowitz E. M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998 Jul 24;94(2):261–271. doi: 10.1016/s0092-8674(00)81425-7. [DOI] [PubMed] [Google Scholar]
  28. Johnson P. R., Ecker J. R. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet. 1998;32:227–254. doi: 10.1146/annurev.genet.32.1.227. [DOI] [PubMed] [Google Scholar]
  29. Kaneko T., Kotani H., Nakamura Y., Sato S., Asamizu E., Miyajima N., Tabata S. Structural analysis of Arabidopsis thaliana chromosome 5. V. Sequence features of the regions of 1,381,565 bp covered by twenty one physically assigned P1 and TAC clones. DNA Res. 1998 Apr 30;5(2):131–145. doi: 10.1093/dnares/5.2.131. [DOI] [PubMed] [Google Scholar]
  30. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  31. King J. J., Stimart D. P. Genetic analysis of variation for auxin-induced adventitious root formation among eighteen ecotypes of Arabidopsis thaliana L. Heynh. J Hered. 1998 Nov-Dec;89(6):481–487. doi: 10.1093/jhered/89.6.481. [DOI] [PubMed] [Google Scholar]
  32. Kirsch T., Löffler H. G., Kindl H. Plant acyl-CoA oxidase. Purification, characterization, and monomeric apoprotein. J Biol Chem. 1986 Jun 25;261(18):8570–8575. [PubMed] [Google Scholar]
  33. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  34. Kragler F., Lametschwandtner G., Christmann J., Hartig A., Harada J. J. Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13336–13341. doi: 10.1073/pnas.95.22.13336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kunau W. H. Peroxisome biogenesis: from yeast to man. Curr Opin Microbiol. 1998 Apr;1(2):232–237. doi: 10.1016/s1369-5274(98)80016-7. [DOI] [PubMed] [Google Scholar]
  36. Last R. L., Fink G. R. Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science. 1988 Apr 15;240(4850):305–310. doi: 10.1126/science.240.4850.305. [DOI] [PubMed] [Google Scholar]
  37. Leyser H. M., Lincoln C. A., Timpte C., Lammer D., Turner J., Estelle M. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature. 1993 Jul 8;364(6433):161–164. doi: 10.1038/364161a0. [DOI] [PubMed] [Google Scholar]
  38. Lin X., Kaul S., Rounsley S., Shea T. P., Benito M. I., Town C. D., Fujii C. Y., Mason T., Bowman C. L., Barnstead M. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. doi: 10.1038/45471. [DOI] [PubMed] [Google Scholar]
  39. Ludwig-Müller J., Epstein E. Occurrence and in Vivo Biosynthesis of Indole-3-Butyric Acid in Corn (Zea mays L.). Plant Physiol. 1991 Oct;97(2):765–770. doi: 10.1104/pp.97.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Luschnig C., Gaxiola R. A., Grisafi P., Fink G. R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998 Jul 15;12(14):2175–2187. doi: 10.1101/gad.12.14.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Marchant A., Kargul J., May S. T., Muller P., Delbarre A., Perrot-Rechenmann C., Bennett M. J. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 1999 Apr 15;18(8):2066–2073. doi: 10.1093/emboj/18.8.2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mengiste T., Amedeo P., Paszkowski J. High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 1' promoter. Plant J. 1997 Oct;12(4):945–948. doi: 10.1046/j.1365-313x.1997.12040945.x. [DOI] [PubMed] [Google Scholar]
  43. Müller A., Guan C., Gälweiler L., Tänzler P., Huijser P., Marchant A., Parry G., Bennett M., Wisman E., Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998 Dec 1;17(23):6903–6911. doi: 10.1093/emboj/17.23.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nordström A. C., Jacobs F. A., Eliasson L. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings. Plant Physiol. 1991 Jul;96(3):856–861. doi: 10.1104/pp.96.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Normanly J., Grisafi P., Fink G. R., Bartel B. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell. 1997 Oct;9(10):1781–1790. doi: 10.1105/tpc.9.10.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pickett F. B., Wilson A. K., Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol. 1990 Nov;94(3):1462–1466. doi: 10.1104/pp.94.3.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Richmond T. A., Bleecker A. B. A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell. 1999 Oct;11(10):1911–1924. doi: 10.1105/tpc.11.10.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ruegger M., Dewey E., Gray W. M., Hobbie L., Turner J., Estelle M. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 1998 Jan 15;12(2):198–207. doi: 10.1101/gad.12.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ruegger M., Dewey E., Hobbie L., Brown D., Bernasconi P., Turner J., Muday G., Estelle M. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell. 1997 May;9(5):745–757. doi: 10.1105/tpc.9.5.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schliebs W., Saidowsky J., Agianian B., Dodt G., Herberg F. W., Kunau W. H. Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J Biol Chem. 1999 Feb 26;274(9):5666–5673. doi: 10.1074/jbc.274.9.5666. [DOI] [PubMed] [Google Scholar]
  51. Silverstone A. L., Ciampaglio C. N., Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell. 1998 Feb;10(2):155–169. doi: 10.1105/tpc.10.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Smalle J., Haegman M., Kurepa J., Van Montagu M, Straeten D. V. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2756–2761. doi: 10.1073/pnas.94.6.2756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Stasinopoulos T. C., Hangarter R. P. Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol. 1990 Aug;93(4):1365–1369. doi: 10.1104/pp.93.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sutter E. G., Cohen J. D. Measurement of indolebutyric Acid in plant tissues by isotope dilution gas chromatography-mass spectrometry analysis. Plant Physiol. 1992 Aug;99(4):1719–1722. doi: 10.1104/pp.99.4.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Thompson H., Schmidt R., Brandes A., Heslop-Harrison J. S., Dean C. A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet. 1996 Nov 27;253(1-2):247–252. doi: 10.1007/s004380050319. [DOI] [PubMed] [Google Scholar]
  56. Urquhart A. J., Kennedy D., Gould S. J., Crane D. I. Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem. 2000 Feb 11;275(6):4127–4136. doi: 10.1074/jbc.275.6.4127. [DOI] [PubMed] [Google Scholar]
  57. Utsuno K., Shikanai T., Yamada Y., Hashimoto T. Agr, an Agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 1998 Oct;39(10):1111–1118. doi: 10.1093/oxfordjournals.pcp.a029310. [DOI] [PubMed] [Google Scholar]
  58. Van der Leij I., Franse M. M., Elgersma Y., Distel B., Tabak H. F. PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11782–11786. doi: 10.1073/pnas.90.24.11782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wimmer C., Schmid M., Veenhuis M., Gietl C. The plant PTS1 receptor: similarities and differences to its human and yeast counterparts. Plant J. 1998 Nov;16(4):453–464. doi: 10.1046/j.1365-313x.1998.00320.x. [DOI] [PubMed] [Google Scholar]
  60. Yamamoto M., Yamamoto K. T. Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of arabidopsis, aux1. Plant Cell Physiol. 1998 Jun;39(6):660–664. doi: 10.1093/oxfordjournals.pcp.a029419. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES