Skip to main content
Genetics logoLink to Genetics
. 2000 Nov;156(3):1363–1377. doi: 10.1093/genetics/156.3.1363

Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis.

J Serrano-Cartagena 1, H Candela 1, P Robles 1, M R Ponce 1, J M Pérez-Pérez 1, P Piqueras 1, J L Micol 1
PMCID: PMC1461319  PMID: 11063708

Abstract

In an attempt to identify genes involved in the control of leaf morphogenesis, we have studied 13 Arabidopsis thaliana mutants with curled, involute leaves, a phenotype herein referred to as Incurvata (Icu), which were isolated by G. Röbbelen and belong to the Arabidopsis Information Service Form Mutants collection. The Icu phenotype was inherited as a single recessive trait in 10 mutants, with semidominance in 2 mutants and with complete dominance in the remaining 1. Complementation analyses indicated that the studied mutations correspond to five genes, representative alleles of which were mapped relative to polymorphic microsatellites. Although most double-mutant combinations displayed additivity of the Icu phenotypes, those of icu1 icu2 and icu3 icu4 double mutants were interpreted as synergistic, which suggests that the five genes studied represent three independent genetic operations that are at work for the leaf to acquire its final form at full expansion. We have shown that icu1 mutations are alleles of the Polycomb group gene CURLY LEAF (CLF) and that the leaf phenotype of the icu2 mutant is suppressed in an agamous background, as is known for clf mutants. In addition, we have tested by means of multiplex RT-PCR the transcription of several floral genes in Icu leaves. Ectopic expression of AGAMOUS and APETALA3 was observed in clf and icu2, but not in icu3, icu4, and icu5 mutants. Taken together, these results suggest that CLF and ICU2 play related roles, the latter being a candidate to belong to the Polycomb group of regulatory genes. We propose that, as flowers evolved, a new major class of genes, including CLF and ICU2, may have been recruited to prevent the expression of floral homeotic genes in the leaves.

Full Text

The Full Text of this article is available as a PDF (738.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  2. Berná G., Robles P., Micol J. L. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics. 1999 Jun;152(2):729–742. doi: 10.1093/genetics/152.2.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991 May;112(1):1–20. doi: 10.1242/dev.112.1.1. [DOI] [PubMed] [Google Scholar]
  5. Bradley D., Carpenter R., Sommer H., Hartley N., Coen E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 1993 Jan 15;72(1):85–95. doi: 10.1016/0092-8674(93)90052-r. [DOI] [PubMed] [Google Scholar]
  6. Candela H., Martínez-Laborda A., Micol J. L. Venation pattern formation in Arabidopsis thaliana vegetative leaves. Dev Biol. 1999 Jan 1;205(1):205–216. doi: 10.1006/dbio.1998.9111. [DOI] [PubMed] [Google Scholar]
  7. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349–1349. doi: 10.1093/nar/19.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finnegan E. J., Peacock W. J., Dennis E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8449–8454. doi: 10.1073/pnas.93.16.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodrich J., Puangsomlee P., Martin M., Long D., Meyerowitz E. M., Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature. 1997 Mar 6;386(6620):44–51. doi: 10.1038/386044a0. [DOI] [PubMed] [Google Scholar]
  10. Jack T., Fox G. L., Meyerowitz E. M. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell. 1994 Feb 25;76(4):703–716. doi: 10.1016/0092-8674(94)90509-6. [DOI] [PubMed] [Google Scholar]
  11. Kania T., Russenberger D., Peng S., Apel K., Melzer S. FPF1 promotes flowering in Arabidopsis. Plant Cell. 1997 Aug;9(8):1327–1338. doi: 10.1105/tpc.9.8.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kater M. M., Colombo L., Franken J., Busscher M., Masiero S., Van Lookeren Campagne M. M., Angenent G. C. Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell. 1998 Feb;10(2):171–182. doi: 10.1105/tpc.10.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kennison J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet. 1995;29:289–303. doi: 10.1146/annurev.ge.29.120195.001445. [DOI] [PubMed] [Google Scholar]
  14. Kim B. C., Soh M. C., Kang B. J., Furuya M., Nam H. G. Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J. 1996 Apr;9(4):441–456. doi: 10.1046/j.1365-313x.1996.09040441.x. [DOI] [PubMed] [Google Scholar]
  15. Kim G. T., Tsukaya H., Uchimiya H. The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta. 1998 Oct;206(2):175–183. doi: 10.1007/s004250050389. [DOI] [PubMed] [Google Scholar]
  16. Krizek B. A., Meyerowitz E. M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development. 1996 Jan;122(1):11–22. doi: 10.1242/dev.122.1.11. [DOI] [PubMed] [Google Scholar]
  17. Mandel M. A., Bowman J. L., Kempin S. A., Ma H., Meyerowitz E. M., Yanofsky M. F. Manipulation of flower structure in transgenic tobacco. Cell. 1992 Oct 2;71(1):133–143. doi: 10.1016/0092-8674(92)90272-e. [DOI] [PubMed] [Google Scholar]
  18. Mizukami Y., Ma H. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell. 1997 Mar;9(3):393–408. doi: 10.1105/tpc.9.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Müller J. Transcriptional silencing by the Polycomb protein in Drosophila embryos. EMBO J. 1995 Mar 15;14(6):1209–1220. doi: 10.1002/j.1460-2075.1995.tb07104.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pnueli L., Hareven D., Rounsley S. D., Yanofsky M. F., Lifschitz E. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell. 1994 Feb;6(2):163–173. doi: 10.1105/tpc.6.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poethig R. S. Leaf morphogenesis in flowering plants. Plant Cell. 1997 Jul;9(7):1077–1087. doi: 10.1105/tpc.9.7.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ponce M. R., Pérez-Pérez J. M., Piqueras P., Micol J. L. A multiplex reverse transcriptase-polymerase chain reaction method for fluorescence-based semiautomated detection of gene expression in Arabidopsis thaliana. Planta. 2000 Sep;211(4):606–608. doi: 10.1007/s004250000371. [DOI] [PubMed] [Google Scholar]
  23. Ponce M. R., Quesada V., Micol J. L. Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. Plant J. 1998 May;14(4):497–501. doi: 10.1046/j.1365-313x.1998.00146.x. [DOI] [PubMed] [Google Scholar]
  24. Ponce M. R., Robles P., Micol J. L. High-throughput genetic mapping in Arabidopsis thaliana. Mol Gen Genet. 1999 Mar;261(2):408–415. doi: 10.1007/s004380050982. [DOI] [PubMed] [Google Scholar]
  25. Reed J. W., Elumalai R. P., Chory J. Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation. Genetics. 1998 Mar;148(3):1295–1310. doi: 10.1093/genetics/148.3.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Riechmann J. L., Meyerowitz E. M. The AP2/EREBP family of plant transcription factors. Biol Chem. 1998 Jun;379(6):633–646. doi: 10.1515/bchm.1998.379.6.633. [DOI] [PubMed] [Google Scholar]
  27. Rouse D., Mackay P., Stirnberg P., Estelle M., Leyser O. Changes in auxin response from mutations in an AUX/IAA gene. Science. 1998 Feb 27;279(5355):1371–1373. doi: 10.1126/science.279.5355.1371. [DOI] [PubMed] [Google Scholar]
  28. Sawa S., Watanabe K., Goto K., Liu Y. G., Shibata D., Kanaya E., Morita E. H., Okada K. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev. 1999 May 1;13(9):1079–1088. doi: 10.1101/gad.13.9.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Serrano-Cartagena J., Robles P., Ponce M. R., Micol J. L. Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Mol Gen Genet. 1999 Jun;261(4-5):725–739. doi: 10.1007/s004380050016. [DOI] [PubMed] [Google Scholar]
  30. Sinha N., Hake S., Freeling M. Genetic and molecular analysis of leaf development. Curr Top Dev Biol. 1993;28:47–80. doi: 10.1016/s0070-2153(08)60209-4. [DOI] [PubMed] [Google Scholar]
  31. Telfer A., Poethig R. S. HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development. 1998 May;125(10):1889–1898. doi: 10.1242/dev.125.10.1889. [DOI] [PubMed] [Google Scholar]
  32. Timmermans M. C., Hudson A., Becraft P. W., Nelson T. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science. 1999 Apr 2;284(5411):151–153. doi: 10.1126/science.284.5411.151. [DOI] [PubMed] [Google Scholar]
  33. Timpte C., Wilson A. K., Estelle M. The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics. 1994 Dec;138(4):1239–1249. doi: 10.1093/genetics/138.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsiantis M., Langdale J. A. The formation of leaves. Curr Opin Plant Biol. 1998 Feb;1(1):43–48. doi: 10.1016/s1369-5266(98)80126-x. [DOI] [PubMed] [Google Scholar]
  35. Tsiantis M., Schneeberger R., Golz J. F., Freeling M., Langdale J. A. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science. 1999 Apr 2;284(5411):154–156. doi: 10.1126/science.284.5411.154. [DOI] [PubMed] [Google Scholar]
  36. Tsuchimoto S., van der Krol A. R., Chua N. H. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell. 1993 Aug;5(8):843–853. doi: 10.1105/tpc.5.8.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsuge T., Tsukaya H., Uchimiya H. Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development. 1996 May;122(5):1589–1600. doi: 10.1242/dev.122.5.1589. [DOI] [PubMed] [Google Scholar]
  38. Waites R., Selvadurai H. R., Oliver I. R., Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell. 1998 May 29;93(5):779–789. doi: 10.1016/s0092-8674(00)81439-7. [DOI] [PubMed] [Google Scholar]
  39. Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. doi: 10.1038/346035a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES