Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Sep 15;24(18):3629–3634. doi: 10.1093/nar/24.18.3629

Synthesis of a fluorescent 7-methylguanosine analog and a fluorescence spectroscopic study of its reaction with wheatgerm cap binding proteins.

J Ren 1, D J Goss 1
PMCID: PMC146132  PMID: 8836193

Abstract

In the initiation of protein synthesis, the mRNA 5'-terminal 7-methylguanosine cap structure and several recognition proteins play a pivotal role. For the study of this cap binding reaction, one approach is to use fluorescence spectroscopy. A ribose diol-modified fluorescent cap analog, anthraniloyl-m7GTP (Ant-m7GTP), was designed and synthesized for this purpose. This fluorescent cap analog was found to have a high quantum yield, resistance to photobleaching and avoided overlap of excitation and emission wavelengths with those of proteins. The binding of Ant-m7GTP with wheatgerm initiation factors elF-4F and elF-(iso)4F was determined. The fluorescent cap analog and m7GTP had similar interactions with both cap binding proteins. Fluorescence quenching experiments showed that the microenvironment of Ant-m7GTP when bound to protein was hydrophobic.

Full Text

The Full Text of this article is available as a PDF (124.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Carberry S. E., Darzynkiewicz E., Goss D. J. A comparison of the binding of methylated cap analogues to wheat germ protein synthesis initiation factors 4F and (iso)4F. Biochemistry. 1991 Feb 12;30(6):1624–1627. doi: 10.1021/bi00220a026. [DOI] [PubMed] [Google Scholar]
  3. Carberry S. E., Friedland D. E., Rhoads R. E., Goss D. J. Binding of protein synthesis initiation factor 4E to oligoribonucleotides: effects of cap accessibility and secondary structure. Biochemistry. 1992 Feb 11;31(5):1427–1432. doi: 10.1021/bi00120a020. [DOI] [PubMed] [Google Scholar]
  4. Carberry S. E., Goss D. J. Wheat germ initiation factors 4F and (iso)4F interact differently with oligoribonucleotide analogues of rabbit alpha-globin mRNA. Biochemistry. 1991 May 7;30(18):4542–4545. doi: 10.1021/bi00232a025. [DOI] [PubMed] [Google Scholar]
  5. Carberry S. E., Rhoads R. E., Goss D. J. A spectroscopic study of the binding of m7GTP and m7GpppG to human protein synthesis initiation factor 4E. Biochemistry. 1989 Oct 3;28(20):8078–8083. doi: 10.1021/bi00446a017. [DOI] [PubMed] [Google Scholar]
  6. Darzynkiewicz E., Antosiewicz J., Ekiel I., Morgan M. A., Tahara S. M., Shatkin A. J. Methyl esterification of m7G5'p reversibly blocks its activity as an analog of eukaryotic mRNA 5'-caps. J Mol Biol. 1981 Dec 5;153(2):451–458. doi: 10.1016/0022-2836(81)90289-8. [DOI] [PubMed] [Google Scholar]
  7. Darzynkiewicz E., Ekiel I., Lassota P., Tahara S. M. Inhibition of eukaryotic translation by analogues of messenger RNA 5'-cap: chemical and biological consequences of 5'-phosphate modifications of 7-methylguanosine 5'-monophosphate. Biochemistry. 1987 Jul 14;26(14):4372–4380. doi: 10.1021/bi00388a028. [DOI] [PubMed] [Google Scholar]
  8. Darzynkiewicz E., Stepinski J., Ekiel I., Goyer C., Sonenberg N., Temeriusz A., Jin Y., Sijuwade T., Haber D., Tahara S. M. Inhibition of eukaryotic translation by nucleoside 5'-monophosphate analogues of mRNA 5'-cap: changes in N7 substituent affect analogue activity. Biochemistry. 1989 May 30;28(11):4771–4778. doi: 10.1021/bi00437a038. [DOI] [PubMed] [Google Scholar]
  9. Darzynkiewicz E., Stepinski J., Ekiel I., Jin Y., Haber D., Sijuwade T., Tahara S. M. Beta-globin mRNAs capped with m7G, m2.7(2)G or m2.2.7(3)G differ in intrinsic translation efficiency. Nucleic Acids Res. 1988 Sep 26;16(18):8953–8962. doi: 10.1093/nar/16.18.8953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eccleston J. F., Gratton E., Jameson D. M. Interaction of a fluorescent analogue of GDP with elongation factor Tu: steady-state and time-resolved fluorescence studies. Biochemistry. 1987 Jun 30;26(13):3902–3907. doi: 10.1021/bi00387a024. [DOI] [PubMed] [Google Scholar]
  11. Georghiou S., Saim A. M. Excited-state properties of DNA methylated at the N-7 position of guanine and its free fluorophore at room temperature. Photochem Photobiol. 1986 Dec;44(6):733–740. doi: 10.1111/j.1751-1097.1986.tb05531.x. [DOI] [PubMed] [Google Scholar]
  12. Giovane A., Balestrieri C., Balestrieri M. L., Servillo L. Interaction studies between elongation factor Tu and anthraniloyl-fluorescent analogues of guanyl nucleotides. Eur J Biochem. 1995 Jan 15;227(1-2):428–432. doi: 10.1111/j.1432-1033.1995.tb20405.x. [DOI] [PubMed] [Google Scholar]
  13. Goss D. J., Carberry S. E., Dever T. E., Merrick W. C., Rhoads R. E. A fluorescence study of the interaction of protein synthesis initiation factors 4A, 4E, and 4F with mRNA and oligonucleotide analogs. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):163–166. doi: 10.1016/0167-4781(90)90160-4. [DOI] [PubMed] [Google Scholar]
  14. Goss D. J., Carberry S. E., Dever T. E., Merrick W. C., Rhoads R. E. Fluorescence study of the binding of m7GpppG and rabbit globin mRNA to protein synthesis initiation factors 4A, 4E, and 4F. Biochemistry. 1990 May 29;29(21):5008–5012. doi: 10.1021/bi00473a002. [DOI] [PubMed] [Google Scholar]
  15. Goss D. J., Woodley C. L., Wahba A. J. A fluorescence study of the binding of eucaryotic initiation factors to messenger RNA and messenger RNA analogues. Biochemistry. 1987 Mar 24;26(6):1551–1556. doi: 10.1021/bi00380a009. [DOI] [PubMed] [Google Scholar]
  16. Hershey J. W. Translational control in mammalian cells. Annu Rev Biochem. 1991;60:717–755. doi: 10.1146/annurev.bi.60.070191.003441. [DOI] [PubMed] [Google Scholar]
  17. Hileman R. E., Parkhurst K. M., Gupta N. K., Parkhurst L. J. Synthesis and characterization of conjugates formed between periodate-oxidized ribonucleotides and amine-containing fluorophores. Bioconjug Chem. 1994 Sep-Oct;5(5):436–444. doi: 10.1021/bc00029a010. [DOI] [PubMed] [Google Scholar]
  18. Hiratsuka T. A chromophoric and fluorescent analog of GTP, 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP, as a spectroscopic probe for the GTP inhibitory site of liver glutamate dehydrogenase. J Biol Chem. 1985 Apr 25;260(8):4784–4790. [PubMed] [Google Scholar]
  19. Hiratsuka T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta. 1983 Feb 15;742(3):496–508. doi: 10.1016/0167-4838(83)90267-4. [DOI] [PubMed] [Google Scholar]
  20. Hoyer P. B., Fletcher P., Haley B. E. Synthesis of 2',3'-O-(2,4,6-trinitrocyclohexadienylidine)guanosine 5'-triphosphate and a study of its inhibitory properties with adenylate cyclase. Arch Biochem Biophys. 1986 Mar;245(2):369–378. doi: 10.1016/0003-9861(86)90228-6. [DOI] [PubMed] [Google Scholar]
  21. Lax S. R., Browning K. S., Maia D. M., Ravel J. M. ATPase activities of wheat germ initiation factors 4A, 4B, and 4F. J Biol Chem. 1986 Nov 25;261(33):15632–15636. [PubMed] [Google Scholar]
  22. Lax S. R., Lauer S. J., Browning K. S., Ravel J. M. Purification and properties of protein synthesis initiation and elongation factors from wheat germ. Methods Enzymol. 1986;118:109–128. doi: 10.1016/0076-6879(86)18068-2. [DOI] [PubMed] [Google Scholar]
  23. Merrick W. C. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992 Jun;56(2):291–315. doi: 10.1128/mr.56.2.291-315.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mueser T. C., Parkhurst L. J. Synthesis of dansyl ribonucleotides and their use in steady-state fluorescence anisotropy studies of nucleotide binding by initiation factor-2 (eIF-2) and histone H1. Int J Biochem. 1993 Nov;25(11):1689–1696. doi: 10.1016/0020-711x(93)90529-n. [DOI] [PubMed] [Google Scholar]
  25. Muthukrishnan S., Morgan M., Banerjee A. K., Shatkin A. J. Influence of 5'-terminal m7G and 2'--O-methylated residues on messenger ribonucleic acid binding to ribosomes. Biochemistry. 1976 Dec 28;15(26):5761–5768. doi: 10.1021/bi00671a012. [DOI] [PubMed] [Google Scholar]
  26. Nishimura Y., Takahashi S., Yamamoto T., Tsuboi M., Hattori M., Miura K., Yamaguchi K., Ohtani S., Hata T. On the base-stacking in the 5'-terminal cap structure of mRNA: a fluorescence study. Nucleic Acids Res. 1980 Mar 11;8(5):1107–1119. doi: 10.1093/nar/8.5.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rose J. K., Lodish H. F. Translation in vitro of vesicular stomatitis virus mRNA lacking 5'-terminal 7-methylguanosine. Nature. 1976 Jul 1;262(5563):32–37. doi: 10.1038/262032a0. [DOI] [PubMed] [Google Scholar]
  28. Sonenberg N. Cap-binding proteins of eukaryotic messenger RNA: functions in initiation and control of translation. Prog Nucleic Acid Res Mol Biol. 1988;35:173–207. doi: 10.1016/s0079-6603(08)60614-5. [DOI] [PubMed] [Google Scholar]
  29. Sonenberg N., Morgan M. A., Merrick W. C., Shatkin A. J. A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5'-terminal cap in mRNA. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4843–4847. doi: 10.1073/pnas.75.10.4843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sonenberg N. Regulation of translation and cell growth by eIF-4E. Biochimie. 1994;76(9):839–846. doi: 10.1016/0300-9084(94)90185-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES